IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v385y1997i6619d10.1038_385810a0.html
   My bibliography  Save this article

Viable offspring derived from fetal and adult mammalian cells

Author

Listed:
  • I. Wilmut

    (Roslin Institute (Edinburgh))

  • A. E. Schnieke

    (Roslin Institute (Edinburgh))

  • J. McWhir

    (Roslin Institute (Edinburgh))

  • A. J. Kind

    (Roslin Institute (Edinburgh))

  • K. H. S. Campbell

    (Roslin Institute (Edinburgh))

Abstract

Fertilization of mammalian eggs is followed by successive cell divisions and progressive differentiation, first into the early embryo and subsequently into all of the cell types that make up the adult animal. Transfer of a single nucleus at a specific stage of development, to an enucleated unfertilized egg, provided an opportunity to investigate whether cellular differentiation to that stage involved irreversible genetic modification. The first offspring to develop from a differentiated cell were born after nuclear transfer from an embryo-derived cell line that had been induced to become quiescent1. Using the same procedure, we now report the birth of live lambs from three new cell populations established from adult mammary gland, fetus and embryo. The fact that a lamb was derived from an adult cell confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term. The birth of lambs from differentiated fetal and adult cells also reinforces previous speculation1,2 that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.

Suggested Citation

  • I. Wilmut & A. E. Schnieke & J. McWhir & A. J. Kind & K. H. S. Campbell, 1997. "Viable offspring derived from fetal and adult mammalian cells," Nature, Nature, vol. 385(6619), pages 810-813, February.
  • Handle: RePEc:nat:nature:v:385:y:1997:i:6619:d:10.1038_385810a0
    DOI: 10.1038/385810a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/385810a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/385810a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shazia Kiyani & Sohaib Ahmed Hashmi, 2019. "The Emergent Bioethics of Human Cloning Debate in Global Context," Global Regional Review, Humanity Only, vol. 4(3), pages 145-153, September.
    2. Sayaka Wakayama & Daiyu Ito & Erika Hayashi & Takashi Ishiuchi & Teruhiko Wakayama, 2022. "Healthy cloned offspring derived from freeze-dried somatic cells," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. M. Samiec & M. Skrzyszowska, 2005. "Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique: a review," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 50(5), pages 185-195.
    4. M. Samiec & M. Skrzyszowska, 2005. "Microsurgical nuclear transfer by intraooplasmic karyoplast injection as an alternative embryo reconstruction method in somatic cloning of pigs and other mammal species; application value of the metho," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 50(6), pages 235-242.
    5. Ruimin Xu & Qianshu Zhu & Yuyan Zhao & Mo Chen & Lingyue Yang & Shijun Shen & Guang Yang & Zhifei Shi & Xiaolei Zhang & Qi Shi & Xiaochen Kou & Yanhong Zhao & Hong Wang & Cizhong Jiang & Chong Li & Sh, 2023. "Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. David Johnson & Adam J. Bock, 2017. "Coping with uncertainty: entrepreneurial sensemaking in regenerative medicine venturing," The Journal of Technology Transfer, Springer, vol. 42(1), pages 33-58, February.
    7. Zhaodi Liao & Jixiang Zhang & Shiyu Sun & Yuzhuo Li & Yuting Xu & Chunyang Li & Jing Cao & Yanhong Nie & Zhuoyue Niu & Jingwen Liu & Falong Lu & Zhen Liu & Qiang Sun, 2024. "Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Luca Verginer & Massimo Riccaboni, 2021. "Stem cell legislation and its impact on the geographic preferences of stem cell researchers," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 163-189, March.
    9. Y. Tao & W. Han & M. Zhang & Y. Zhang & J. Fang & J. Liu & R. Zhang & H. Chen & F. Fang & N. Tian & D. Huo & Y. Liu & F. Li & J. Ding & P. Maddox-Hyttel & X. Zhang, 2009. "Production of Boer goat (Capra hircus) by nuclear transfer of cultured and cryopreserved fibroblast cells into slaughterhouse-derived oocytes," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 54(10), pages 448-460.
    10. Shepherd, Richard & Barnett, Julie & Cooper, Helen & Coyle, Adrian & Moran-Ellis, Jo & Senior, Victoria & Walton, Chris, 2007. "Towards an understanding of British public attitudes concerning human cloning," Social Science & Medicine, Elsevier, vol. 65(2), pages 377-392, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:385:y:1997:i:6619:d:10.1038_385810a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.