IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i5d10.1038_s41893-020-0491-z.html
   My bibliography  Save this article

The role of soil carbon in natural climate solutions

Author

Listed:
  • D. A. Bossio

    (The Nature Conservancy)

  • S. C. Cook-Patton

    (The Nature Conservancy)

  • P. W. Ellis

    (The Nature Conservancy)

  • J. Fargione

    (The Nature Conservancy)

  • J. Sanderman

    (Woods Hole Research Center)

  • P. Smith

    (University of Aberdeen)

  • S. Wood

    (The Nature Conservancy
    Yale School of Forestry and Environmental Studies)

  • R. J. Zomer

    (Chinese Academy of Sciences)

  • M. Unger

    (Silvestrum Climate Associates LLC)

  • I. M. Emmer

    (Silvestrum Climate Associates LLC)

  • B. W. Griscom

    (Conservation International)

Abstract

Mitigating climate change requires clean energy and the removal of atmospheric carbon. Building soil carbon is an appealing way to increase carbon sinks and reduce emissions owing to the associated benefits to agriculture. However, the practical implementation of soil carbon climate strategies lags behind the potential, partly because we lack clarity around the magnitude of opportunity and how to capitalize on it. Here we quantify the role of soil carbon in natural (land-based) climate solutions and review some of the project design mechanisms available to tap into the potential. We show that soil carbon represents 25% of the potential of natural climate solutions (total potential, 23.8 Gt of CO2-equivalent per year), of which 40% is protection of existing soil carbon and 60% is rebuilding depleted stocks. Soil carbon comprises 9% of the mitigation potential of forests, 72% for wetlands and 47% for agriculture and grasslands. Soil carbon is important to land-based efforts to prevent carbon emissions, remove atmospheric carbon dioxide and deliver ecosystem services in addition to climate mitigation.

Suggested Citation

  • D. A. Bossio & S. C. Cook-Patton & P. W. Ellis & J. Fargione & J. Sanderman & P. Smith & S. Wood & R. J. Zomer & M. Unger & I. M. Emmer & B. W. Griscom, 2020. "The role of soil carbon in natural climate solutions," Nature Sustainability, Nature, vol. 3(5), pages 391-398, May.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:5:d:10.1038_s41893-020-0491-z
    DOI: 10.1038/s41893-020-0491-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0491-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0491-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katerina Georgiou & Robert B. Jackson & Olga Vindušková & Rose Z. Abramoff & Anders Ahlström & Wenting Feng & Jennifer W. Harden & Adam F. A. Pellegrini & H. Wayne Polley & Jennifer L. Soong & William, 2022. "Global stocks and capacity of mineral-associated soil organic carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ribeiro, N.S. & Armstrong, Amanda Hildt & Fischer, Rico & Kim, Yeon-Su & Shugart, Herman Henry & Ribeiro-Barros, Ana I. & Chauque, Aniceto & Tear, T. & Washington-Allen, Robert & Bandeira, Romana R., 2021. "Prediction of forest parameters and carbon accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve, Northern Mozambique," Forest Policy and Economics, Elsevier, vol. 133(C).
    3. Stephen M. Bell & Samuel J. Raymond & He Yin & Wenzhe Jiao & Daniel S. Goll & Philippe Ciais & Elsa Olivetti & Victor O. Leshyk & César Terrer, 2023. "Quantifying the recarbonization of post-agricultural landscapes," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    4. Dmitriev, M., 2022. "Scenarios of greenhouse gases emissions for Russia," Journal of the New Economic Association, New Economic Association, vol. 56(4), pages 201-206.
    5. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Zhe (Han) Weng & Lukas Zwieten & Ehsan Tavakkoli & Michael T. Rose & Bhupinder Pal Singh & Stephen Joseph & Lynne M. Macdonald & Stephen Kimber & Stephen Morris & Terry J. Rose & Braulio S. Archanjo &, 2022. "Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Bernardo Martin-Gorriz & José A. Zabala & Virginia Sánchez-Navarro & Belén Gallego-Elvira & Víctor Martínez-García & Francisco Alcon & José Francisco Maestre-Valero, 2022. "Intercropping Practices in Mediterranean Mandarin Orchards from an Environmental and Economic Perspective," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    8. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    10. Damien Beillouin & Marc Corbeels & Julien Demenois & David Berre & Annie Boyer & Abigail Fallot & Frédéric Feder & Rémi Cardinael, 2023. "A global meta-analysis of soil organic carbon in the Anthropocene," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    13. Shannan K. Sweet & Jonathon P. Schuldt & Johannes Lehmann & Deborah A. Bossio & Dominic Woolf, 2021. "Perceptions of naturalness predict US public support for Soil Carbon Storage as a climate solution," Climatic Change, Springer, vol. 166(1), pages 1-15, May.
    14. Comello, Stephen & Reichelstein, Julia & Reichelstein, Stefan, 2023. "Corporate carbon reporting: Improving transparency and accountability," ZEW Discussion Papers 23-026, ZEW - Leibniz Centre for European Economic Research.
    15. Valentina Brombin & Enrico Mistri & Mauro De Feudis & Camilla Forti & Gian Marco Salani & Claudio Natali & Gloria Falsone & Livia Vittori Antisari & Gianluca Bianchini, 2020. "Soil Carbon Investigation in Three Pedoclimatic and Agronomic Settings of Northern Italy," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    16. Jing Tian & Jennifer A. J. Dungait & Ruixing Hou & Ye Deng & Iain P. Hartley & Yunfeng Yang & Yakov Kuzyakov & Fusuo Zhang & M. Francesca Cotrufo & Jizhong Zhou, 2024. "Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. McClelland, Shelby C. & Paustian, Keith & Williams, Stephen & Schipanski, Meagan E., 2021. "Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools," Agricultural Systems, Elsevier, vol. 191(C).
    18. Camila Bonilla-Cedrez & Peter Steward & Todd S. Rosenstock & Philip Thornton & Jacobo Arango & Martin Kropff & Julian Ramirez-Villegas, 2023. "Priority areas for investment in more sustainable and climate-resilient livestock systems," Nature Sustainability, Nature, vol. 6(10), pages 1279-1286, October.
    19. Sonali Shukla McDermid & Matthew Hayek & Dale W. Jamieson & Galina Hale & David Kanter, 2023. "Research needs for a food system transition," Climatic Change, Springer, vol. 176(4), pages 1-15, April.
    20. Chengjie Ren & Zhenghu Zhou & Manuel Delgado-Baquerizo & Felipe Bastida & Fazhu Zhao & Yuanhe Yang & Shuohong Zhang & Jieying Wang & Chao Zhang & Xinhui Han & Jun Wang & Gaihe Yang & Gehong Wei, 2024. "Thermal sensitivity of soil microbial carbon use efficiency across forest biomes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:5:d:10.1038_s41893-020-0491-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.