IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i11d10.1038_s41893-018-0172-3.html
   My bibliography  Save this article

Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste

Author

Listed:
  • Wan-Ting Chen

    (University of Illinois at Urbana-Champaign)

  • Yuanhui Zhang

    (University of Illinois at Urbana-Champaign
    China Agricultural University)

  • Timothy H. Lee

    (University of Illinois at Urbana-Champaign)

  • Zhenwei Wu

    (University of Illinois at Urbana-Champaign)

  • Buchun Si

    (University of Illinois at Urbana-Champaign
    China Agricultural University)

  • Chia-Fon F. Lee

    (University of Illinois at Urbana-Champaign)

  • Alice Lin

    (University of Illinois at Urbana-Champaign)

  • Brajendra K. Sharma

    (University of Illinois at Urbana-Champaign)

Abstract

Processing wet biowaste to create a useful product, a practice called valorization, is environmentally sustainable and has the potential to augment energy production. Biocrude converted from wet biowaste using hydrothermal liquefaction (HTL) has comparable heating values to petroleum crude. However, its composition is too complex for use as transportation fuels. Here, we show that distillation combined with esterification can effectively upgrade HTL biocrude oil into diesel blendstock. We demonstrate that the HTL biocrude oil converted from food processing waste and animal manure can be distilled into fractions with similar energy content to that of petroleum diesel. We then reduce the acidity of distillates through esterification to meet the diesel standard. Engine tests performed using 10–20% upgraded distillates blended with diesel show 96–100% power output, 101–102% NOx, 89–91% CO, 92–125% unburned hydrocarbon and 109–115% soot emissions, compared with regular diesel. HTL integrated with distillation and esterification has a higher energy recovery ratio than anaerobic digestion, lipid extraction, HTL combined with hydrotreating and producing diesel from petroleum. This approach realizes the potential of wet biowaste to alleviate petroleum consumption and to reduce greenhouse gas emissions.

Suggested Citation

  • Wan-Ting Chen & Yuanhui Zhang & Timothy H. Lee & Zhenwei Wu & Buchun Si & Chia-Fon F. Lee & Alice Lin & Brajendra K. Sharma, 2018. "Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste," Nature Sustainability, Nature, vol. 1(11), pages 702-710, November.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:11:d:10.1038_s41893-018-0172-3
    DOI: 10.1038/s41893-018-0172-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-018-0172-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-018-0172-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijie Yu & Xinyue Dong & Peng Zhao & Zhicheng Luo & Zhuohua Sun & Xiaoxiao Yang & Qinghai Li & Lei Wang & Yanguo Zhang & Hui Zhou, 2022. "Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Komeil Kohansal & Kamaldeep Sharma & Saqib Sohail Toor & Eliana Lozano Sanchez & Joscha Zimmermann & Lasse Aistrup Rosendahl & Thomas Helmer Pedersen, 2021. "Bio-Crude Production Improvement during Hydrothermal Liquefaction of Biopulp by Simultaneous Application of Alkali Catalysts and Aqueous Phase Recirculation," Energies, MDPI, vol. 14(15), pages 1-21, July.
    4. Krogh, Andreas & Lozano, Eliana M. & Grue, Jeppe & Pedersen, Thomas H., 2024. "Assessment of feasible site locations for biofuel production based on technoeconomic modelling and GHG impact analysis," Applied Energy, Elsevier, vol. 356(C).
    5. Si, Buchun & Watson, Jamison & Wang, Zixin & Wang, Tengfei & Acero Triana, Juan S. & Zhang, Yuanhui, 2024. "Storage stability of biocrude oil fractional distillates derived from the hydrothermal liquefaction of food waste," Renewable Energy, Elsevier, vol. 220(C).
    6. Huang, Yingying & Chen, Xuechu & Liu, Silu & Lu, Jinzhong & Shen, Yingshi & Li, Lei & Peng, Lin & Hong, Jingjie & Zhang, Qiuzhuo & Ostrovsky, Ilia, 2021. "Converting of nuisance cyanobacterial biomass to feedstock for bioethanol production by regulation of intracellular carbon flow: Killing two birds with one stone," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:11:d:10.1038_s41893-018-0172-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.