IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v7y2023i9d10.1038_s41562-023-01672-z.html
   My bibliography  Save this article

Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits

Author

Listed:
  • Tanya B. Horwitz

    (University of Colorado Boulder
    University of Colorado Boulder)

  • Jared V. Balbona

    (University of Colorado Boulder)

  • Katie N. Paulich

    (University of Colorado Boulder
    University of Colorado Boulder)

  • Matthew C. Keller

    (University of Colorado Boulder
    University of Colorado Boulder)

Abstract

Positive correlations between mates can increase trait variation and prevalence, as well as bias estimates from genetically informed study designs. While past studies of similarity between human mating partners have largely found evidence of positive correlations, to our knowledge, no formal meta-analysis has examined human partner correlations across multiple categories of traits. Thus, we conducted systematic reviews and random-effects meta-analyses of human male–female partner correlations across 22 traits commonly studied by psychologists, economists, sociologists, anthropologists, epidemiologists and geneticists. Using ScienceDirect, PubMed and Google Scholar, we incorporated 480 partner correlations from 199 peer-reviewed studies of co-parents, engaged pairs, married pairs and/or cohabitating pairs that were published on or before 16 August 2022. We also calculated 133 trait correlations using up to 79,074 male–female couples in the UK Biobank (UKB). Estimates of the 22 mean meta-analysed correlations ranged from rmeta = 0.08 (adjusted 95% CI = 0.03, 0.13) for extraversion to rmeta = 0.58 (adjusted 95% CI = 0.50, 0.64) for political values, with funnel plots showing little evidence of publication bias across traits. The 133 UKB correlations ranged from rUKB = −0.18 (adjusted 95% CI = −0.20, −0.16) for chronotype (being a ‘morning’ or ‘evening’ person) to rUKB = 0.87 (adjusted 95% CI = 0.86, 0.87) for birth year. Across analyses, political and religious attitudes, educational attainment and some substance use traits showed the highest correlations, while psychological (that is, psychiatric/personality) and anthropometric traits generally yielded lower but positive correlations. We observed high levels of between-sample heterogeneity for most meta-analysed traits, probably because of both systematic differences between samples and true differences in partner correlations across populations.

Suggested Citation

  • Tanya B. Horwitz & Jared V. Balbona & Katie N. Paulich & Matthew C. Keller, 2023. "Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits," Nature Human Behaviour, Nature, vol. 7(9), pages 1568-1583, September.
  • Handle: RePEc:nat:nathum:v:7:y:2023:i:9:d:10.1038_s41562-023-01672-z
    DOI: 10.1038/s41562-023-01672-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-023-01672-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-023-01672-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans Fredrik Sunde & Nikolai Haahjem Eftedal & Rosa Cheesman & Elizabeth C. Corfield & Thomas H. Kleppesto & Anne Caroline Seierstad & Eivind Ystrom & Espen Moen Eilertsen & Fartein Ask Torvik, 2024. "Genetic similarity between relatives provides evidence on the presence and history of assortative mating," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:7:y:2023:i:9:d:10.1038_s41562-023-01672-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.