IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v5y2021i10d10.1038_s41562-021-01114-8.html
   My bibliography  Save this article

A unified framework of direct and indirect reciprocity

Author

Listed:
  • Laura Schmid

    (IST Austria)

  • Krishnendu Chatterjee

    (IST Austria)

  • Christian Hilbe

    (Max Planck Institute for Evolutionary Biology)

  • Martin A. Nowak

    (Harvard University)

Abstract

Direct and indirect reciprocity are key mechanisms for the evolution of cooperation. Direct reciprocity means that individuals use their own experience to decide whether to cooperate with another person. Indirect reciprocity means that they also consider the experiences of others. Although these two mechanisms are intertwined, they are typically studied in isolation. Here, we introduce a mathematical framework that allows us to explore both kinds of reciprocity simultaneously. We show that the well-known ‘generous tit-for-tat’ strategy of direct reciprocity has a natural analogue in indirect reciprocity, which we call ‘generous scoring’. Using an equilibrium analysis, we characterize under which conditions either of the two strategies can maintain cooperation. With simulations, we additionally explore which kind of reciprocity evolves when members of a population engage in social learning to adapt to their environment. Our results draw unexpected connections between direct and indirect reciprocity while highlighting important differences regarding their evolvability.

Suggested Citation

  • Laura Schmid & Krishnendu Chatterjee & Christian Hilbe & Martin A. Nowak, 2021. "A unified framework of direct and indirect reciprocity," Nature Human Behaviour, Nature, vol. 5(10), pages 1292-1302, October.
  • Handle: RePEc:nat:nathum:v:5:y:2021:i:10:d:10.1038_s41562-021-01114-8
    DOI: 10.1038/s41562-021-01114-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-021-01114-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-021-01114-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Quan, Ji & Chen, Xinyue & Wang, Xianjia, 2024. "Repeated prisoner's dilemma games in multi-player structured populations with crosstalk," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    3. Shaohua He & Lei Liu & Qi Liu & Shaoling Fu, 2024. "Creating social value through operational supply chain transparency," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 2333-2351, May.
    4. Wang, Xiaoyue & He, Zhixue & Shi, Lei, 2024. "Conformity poses a double-edged sword effect on the evolution of cooperation within heterogeneous endowment populations," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Wang, Jianwei & Dai, Wenhui & Zheng, Yanfeng & Yu, Fengyuan & Chen, Wei & Xu, Wenshu, 2024. "Partial intervention promotes cooperation and social welfare in regional public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    7. He, Jialu & Cui, Lei, 2024. "The persistence-based game transition resolves the social dilemma," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    8. Hao, Xinyu & Liu, Guangfu & Zhang, Xiaoling & Dong, Liang, 2022. "The coevolution mechanism of stakeholder strategies in the recycled resources industry innovation ecosystem: the view of evolutionary game theory," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    9. Zhang, Wei, 2024. "Network reciprocity and inequality: The role of additional mixing links among social groups," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Zhu, Xiaochen, 2023. "The dynamic edge environment under interactive diversity is a double-edged sword," Applied Mathematics and Computation, Elsevier, vol. 436(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:5:y:2021:i:10:d:10.1038_s41562-021-01114-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.