IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v3y2019i7d10.1038_s41562-019-0603-9.html
   My bibliography  Save this article

Minimizing threat via heuristic and optimal policies recruits hippocampus and medial prefrontal cortex

Author

Listed:
  • Christoph W. Korn

    (University of Zurich
    University of Zurich
    University Medical Center Hamburg-Eppendorf)

  • Dominik R. Bach

    (University of Zurich
    University of Zurich
    University College London)

Abstract

Jointly minimizing multiple threats over extended time horizons enhances survival. Consequently, many tests of approach–avoidance conflicts incorporate multiple threats for probing corollaries of animal and human anxiety. To facilitate computations necessary for threat minimization, the human brain may concurrently harness multiple decision policies and associated neural controllers, but it is unclear which. We combine a task that mimics foraging under predation with behavioural modelling and functional neuroimaging. Human choices rely on immediate predator probability—a myopic heuristic policy—and on the optimal policy, which integrates all relevant variables. Predator probability relates positively and the associated choice uncertainty relates negatively to activations in the anterior hippocampus, amygdala and dorsolateral prefrontal cortex. The optimal policy is positively associated with dorsomedial prefrontal cortex activity. We thus provide a decision-theoretic outlook on the role of the human hippocampus, amygdala and prefrontal cortex in resolving approach–avoidance conflicts relevant for anxiety and integral for survival.

Suggested Citation

  • Christoph W. Korn & Dominik R. Bach, 2019. "Minimizing threat via heuristic and optimal policies recruits hippocampus and medial prefrontal cortex," Nature Human Behaviour, Nature, vol. 3(7), pages 733-745, July.
  • Handle: RePEc:nat:nathum:v:3:y:2019:i:7:d:10.1038_s41562-019-0603-9
    DOI: 10.1038/s41562-019-0603-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-019-0603-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-019-0603-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen M. M. Frolichs & Gabriela Rosenblau & Christoph W. Korn, 2022. "Incorporating social knowledge structures into computational models," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Jacqueline Scholl & Hailey A Trier & Matthew F S Rushworth & Nils Kolling, 2022. "The effect of apathy and compulsivity on planning and stopping in sequential decision-making," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-38, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:3:y:2019:i:7:d:10.1038_s41562-019-0603-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.