IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i7d10.1038_s41560-020-0638-1.html
   My bibliography  Save this article

Author Correction: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction

Author

Listed:
  • Dong Young Chung

    (Argonne National Laboratory)

  • Pietro P. Lopes

    (Argonne National Laboratory)

  • Pedro Farinazzo Bergamo Dias Martins

    (Argonne National Laboratory)

  • Haiying He

    (Valparaiso University)

  • Tomoya Kawaguchi

    (Argonne National Laboratory)

  • Peter Zapol

    (Argonne National Laboratory)

  • Hoydoo You

    (Argonne National Laboratory)

  • Dusan Tripkovic

    (University of Belgrade)

  • Dusan Strmcnik

    (Argonne National Laboratory)

  • Yisi Zhu

    (Argonne National Laboratory)

  • Soenke Seifert

    (Argonne National Laboratory)

  • Sungsik Lee

    (Argonne National Laboratory)

  • Vojislav R. Stamenkovic

    (Argonne National Laboratory)

  • Nenad M. Markovic

    (Argonne National Laboratory)

Abstract

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Suggested Citation

  • Dong Young Chung & Pietro P. Lopes & Pedro Farinazzo Bergamo Dias Martins & Haiying He & Tomoya Kawaguchi & Peter Zapol & Hoydoo You & Dusan Tripkovic & Dusan Strmcnik & Yisi Zhu & Soenke Seifert & Su, 2020. "Author Correction: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction," Nature Energy, Nature, vol. 5(7), pages 550-550, July.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:7:d:10.1038_s41560-020-0638-1
    DOI: 10.1038/s41560-020-0638-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0638-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0638-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yingqing Ou & Liam P. Twight & Bipasa Samanta & Lu Liu & Santu Biswas & Jessica L. Fehrs & Nicole A. Sagui & Javier Villalobos & Joaquín Morales-Santelices & Denis Antipin & Marcel Risch & Maytal Casp, 2023. "Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xiaojing Lin & Zhaojie Wang & Shoufu Cao & Yuying Hu & Siyuan Liu & Xiaodong Chen & Hongyu Chen & Xingheng Zhang & Shuxian Wei & Hui Xu & Zhi Cheng & Qi Hou & Daofeng Sun & Xiaoqing Lu, 2023. "Bioinspired trimesic acid anchored electrocatalysts with unique static and dynamic compatibility for enhanced water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:7:d:10.1038_s41560-020-0638-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.