IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i12d10.1038_s41560-020-00716-2.html
   My bibliography  Save this article

Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins

Author

Listed:
  • Shangshang Chen

    (University of North Carolina at Chapel Hill)

  • Yehao Deng

    (University of North Carolina at Chapel Hill)

  • Hangyu Gu

    (University of North Carolina at Chapel Hill)

  • Shuang Xu

    (University of North Carolina at Chapel Hill)

  • Shen Wang

    (University of North Carolina at Chapel Hill)

  • Zhenhua Yu

    (University of North Carolina at Chapel Hill)

  • Volker Blum

    (Duke University)

  • Jinsong Huang

    (University of North Carolina at Chapel Hill)

Abstract

One major concern for the commercialization of perovskite photovoltaic technology is the toxicity of lead from the water-soluble lead halide perovskites that can contaminate the environment. Here, we report an abundant, low-cost and chemically robust cation-exchange resin (CER)-based method that can prevent lead leakage from damaged perovskite solar modules under severe weather conditions. CERs exhibit both high adsorption capacity and high adsorption rate of lead in water due to the high binding energy with lead ions in the mesoporous structure. Integrating CERs with carbon electrodes and layering them on the glass surface of modules has a negligible detrimental effect on device efficiency while reducing lead leakage from perovskite mini-modules by 62-fold to 14.3 ppb in water. The simulated lead leakage from damaged large-area perovskite solar panels treated with CERs can be further reduced to below 7.0 ppb even in the worst-case scenario that every sub-module is damaged.

Suggested Citation

  • Shangshang Chen & Yehao Deng & Hangyu Gu & Shuang Xu & Shen Wang & Zhenhua Yu & Volker Blum & Jinsong Huang, 2020. "Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins," Nature Energy, Nature, vol. 5(12), pages 1003-1011, December.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:12:d:10.1038_s41560-020-00716-2
    DOI: 10.1038/s41560-020-00716-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-00716-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-00716-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Chen & Chengbin Fei & Shangshang Chen & Hangyu Gu & Xun Xiao & Jinsong Huang, 2021. "Recycling lead and transparent conductors from perovskite solar modules," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Tong Wang & Jiabao Yang & Qi Cao & Xingyu Pu & Yuke Li & Hui Chen & Junsong Zhao & Yixin Zhang & Xingyuan Chen & Xuanhua Li, 2023. "Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    4. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhihao Li & Chunmei Jia & Zhi Wan & Jiayi Xue & Junchao Cao & Meng Zhang & Can Li & Jianghua Shen & Chao Zhang & Zhen Li, 2023. "Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Ziyao Yue & Hu Guo & Yuanhang Cheng, 2023. "Toxicity of Perovskite Solar Cells," Energies, MDPI, vol. 16(10), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:12:d:10.1038_s41560-020-00716-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.