IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07883-7.html
   My bibliography  Save this article

A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA

Author

Listed:
  • Luke A. Yates

    (Imperial College London)

  • Ricardo J. Aramayo

    (Imperial College London)

  • Nilisha Pokhrel

    (Marquette University)

  • Colleen C. Caldwell

    (University of Iowa)

  • Joshua A. Kaplan

    (Imperial College London)

  • Rajika L. Perera

    (Imperial College London
    Poseidon LLC)

  • Maria Spies

    (University of Iowa)

  • Edwin Antony

    (Marquette University)

  • Xiaodong Zhang

    (Imperial College London)

Abstract

Replication Protein A (RPA), the major eukaryotic single stranded DNA-binding protein, binds to exposed ssDNA to protect it from nucleases, participates in a myriad of nucleic acid transactions and coordinates the recruitment of other important players. RPA is a heterotrimer and coats long stretches of single-stranded DNA (ssDNA). The precise molecular architecture of the RPA subunits and its DNA binding domains (DBDs) during assembly is poorly understood. Using cryo electron microscopy we obtained a 3D reconstruction of the RPA trimerisation core bound with ssDNA (∼55 kDa) at ∼4.7 Å resolution and a dimeric RPA assembly on ssDNA. FRET-based solution studies reveal dynamic rearrangements of DBDs during coordinated RPA binding and this activity is regulated by phosphorylation at S178 in RPA70. We present a structural model on how dynamic DBDs promote the cooperative assembly of multiple RPAs on long ssDNA.

Suggested Citation

  • Luke A. Yates & Ricardo J. Aramayo & Nilisha Pokhrel & Colleen C. Caldwell & Joshua A. Kaplan & Rajika L. Perera & Maria Spies & Edwin Antony & Xiaodong Zhang, 2018. "A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07883-7
    DOI: 10.1038/s41467-018-07883-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07883-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07883-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poonam Roshan & Sahiti Kuppa & Jenna R. Mattice & Vikas Kaushik & Rahul Chadda & Nilisha Pokhrel & Brunda R. Tumala & Aparna Biswas & Brian Bothner & Edwin Antony & Sofia Origanti, 2023. "An Aurora B-RPA signaling axis secures chromosome segregation fidelity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Sile F. Yang & Christopher B. Nelson & Jadon K. Wells & Madushan Fernando & Robert Lu & Joshua A. M. Allen & Lisa Malloy & Noa Lamm & Vincent J. Murphy & Joel P. Mackay & Andrew J. Deans & Anthony J. , 2024. "ZNF827 is a single-stranded DNA binding protein that regulates the ATR-CHK1 DNA damage response pathway," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Jina Yu & Chunli Yan & Tanmoy Paul & Lucas Brewer & Susan E. Tsutakawa & Chi-Lin Tsai & Samir M. Hamdan & John A. Tainer & Ivaylo Ivanov, 2024. "Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Jiawei Ding & Xiangting Li & Jiangchuan Shen & Yiling Zhao & Shuchen Zhong & Luhua Lai & Hengyao Niu & Zhi Qi, 2023. "ssDNA accessibility of Rad51 is regulated by orchestrating multiple RPA dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Ananya Acharya & Kristina Kasaciunaite & Martin Göse & Vera Kissling & Raphaël Guérois & Ralf Seidel & Petr Cejka, 2021. "Distinct RPA domains promote recruitment and the helicase-nuclease activities of Dna2," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Clément Madru & Markel Martínez-Carranza & Sébastien Laurent & Alessandra C. Alberti & Maelenn Chevreuil & Bertrand Raynal & Ahmed Haouz & Rémy A. Meur & Marc Delarue & Ghislaine Henneke & Didier Flam, 2023. "DNA-binding mechanism and evolution of replication protein A," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Aditi Mukherjee & Zakir Hossain & Esteban Erben & Shuai Ma & Jun Yong Choi & Hee-Sook Kim, 2023. "Identification of a small-molecule inhibitor that selectively blocks DNA-binding by Trypanosoma brucei replication protein A1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Sarah R. Hengel & Katherine G. Oppenheimer & Chelsea M. Smith & Matthew A. Schaich & Hayley L. Rein & Julieta Martino & Kristie E. Darrah & Maggie Witham & Oluchi C. Ezekwenna & Kyle R. Burton & Benne, 2024. "The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Sahiti Kuppa & Jaigeeth Deveryshetty & Rahul Chadda & Jenna R. Mattice & Nilisha Pokhrel & Vikas Kaushik & Angela Patterson & Nalini Dhingra & Sushil Pangeni & Marisa K. Sadauskas & Sajad Shiekh & Ham, 2022. "Rtt105 regulates RPA function by configurationally stapling the flexible domains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07883-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.