IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07596-x.html
   My bibliography  Save this article

Inertial delay of self-propelled particles

Author

Listed:
  • Christian Scholz

    (Heinrich-Heine-Universität Düsseldorf)

  • Soudeh Jahanshahi

    (Heinrich-Heine-Universität Düsseldorf)

  • Anton Ldov

    (Heinrich-Heine-Universität Düsseldorf)

  • Hartmut Löwen

    (Heinrich-Heine-Universität Düsseldorf)

Abstract

The motion of self-propelled massive particles through a gaseous medium is dominated by inertial effects. Examples include vibrated granulates, activated complex plasmas and flying insects. However, inertia is usually neglected in standard models. Here, we experimentally demonstrate the significance of inertia on macroscopic self-propelled particles. We observe a distinct inertial delay between orientation and velocity of particles, originating from the finite relaxation times in the system. This effect is fully explained by an underdamped generalisation of the Langevin model of active Brownian motion. In stark contrast to passive systems, the inertial delay profoundly influences the long-time dynamics and enables new fundamental strategies for controlling self-propulsion in active matter.

Suggested Citation

  • Christian Scholz & Soudeh Jahanshahi & Anton Ldov & Hartmut Löwen, 2018. "Inertial delay of self-propelled particles," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07596-x
    DOI: 10.1038/s41467-018-07596-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07596-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07596-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Vrugt & Tobias Frohoff-Hülsmann & Eyal Heifetz & Uwe Thiele & Raphael Wittkowski, 2023. "From a microscopic inertial active matter model to the Schrödinger equation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Cantisán, Julia & Seoane, Jesús M. & Sanjuán, Miguel A.F., 2023. "Rotating cluster formations emerge in an ensemble of active particles," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Lukas Hecht & Iris Dong & Benno Liebchen, 2024. "Motility-induced coexistence of a hot liquid and a cold gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07596-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.