IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47533-9.html
   My bibliography  Save this article

Motility-induced coexistence of a hot liquid and a cold gas

Author

Listed:
  • Lukas Hecht

    (Technical University of Darmstadt)

  • Iris Dong

    (Technical University of Darmstadt)

  • Benno Liebchen

    (Technical University of Darmstadt)

Abstract

If two phases exist at the same time, such as a gas and a liquid, they have the same temperature. This fundamental law of equilibrium physics is known to apply even to many non-equilibrium systems. However, recently, there has been much attention in the finding that inertial self-propelled particles like Janus colloids in a plasma or microflyers could self-organize into a hot gas-like phase that coexists with a colder liquid-like phase. Here, we show that a kinetic temperature difference across coexisting phases can occur even in equilibrium systems when adding generic (overdamped) self-propelled particles. In particular, we consider mixtures of overdamped active and inertial passive Brownian particles and show that when they phase separate into a dense and a dilute phase, both phases have different kinetic temperatures. Surprisingly, we find that the dense phase (liquid) cannot only be colder but also hotter than the dilute phase (gas). This effect hinges on correlated motions where active particles collectively push and heat up passive ones primarily within the dense phase. Our results answer the fundamental question if a non-equilibrium gas can be colder than a coexisting liquid and create a route to equip matter with self-organized domains of different kinetic temperatures.

Suggested Citation

  • Lukas Hecht & Iris Dong & Benno Liebchen, 2024. "Motility-induced coexistence of a hot liquid and a cold gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47533-9
    DOI: 10.1038/s41467-024-47533-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47533-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47533-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juliane U. Klamser & Sebastian C. Kapfer & Werner Krauth, 2018. "Thermodynamic phases in two-dimensional active matter," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Christian Scholz & Soudeh Jahanshahi & Anton Ldov & Hartmut Löwen, 2018. "Inertial delay of self-propelled particles," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zafer, Aytürk Hamdi & Akguc, Gursoy B., 2022. "Feedback and reactive flow effects on living crystal formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    2. Michael Vrugt & Tobias Frohoff-Hülsmann & Eyal Heifetz & Uwe Thiele & Raphael Wittkowski, 2023. "From a microscopic inertial active matter model to the Schrödinger equation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Cantisán, Julia & Seoane, Jesús M. & Sanjuán, Miguel A.F., 2023. "Rotating cluster formations emerge in an ensemble of active particles," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Helena Massana-Cid & Claudio Maggi & Nicoletta Gnan & Giacomo Frangipane & Roberto Di Leonardo, 2024. "Multiple temperatures and melting of a colloidal active crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. William E. Arter & Runzhang Qi & Nadia A. Erkamp & Georg Krainer & Kieran Didi & Timothy J. Welsh & Julia Acker & Jonathan Nixon-Abell & Seema Qamar & Jordina Guillén-Boixet & Titus M. Franzmann & Dav, 2022. "Biomolecular condensate phase diagrams with a combinatorial microdroplet platform," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Qianhong Yang & Maoqiang Jiang & Francesco Picano & Lailai Zhu, 2024. "Shaping active matter from crystalline solids to active turbulence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47533-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.