IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07248-0.html
   My bibliography  Save this article

Non-obstructive intracellular nanolasers

Author

Listed:
  • Alasdair H. Fikouras

    (SUPA, School of Physics and Astronomy, University of St Andrews)

  • Marcel Schubert

    (SUPA, School of Physics and Astronomy, University of St Andrews)

  • Markus Karl

    (SUPA, School of Physics and Astronomy, University of St Andrews)

  • Jothi D. Kumar

    (SUPA, School of Physics and Astronomy, University of St Andrews)

  • Simon J. Powis

    (School of Medicine, University of St Andrews)

  • Andrea Di Falco

    (SUPA, School of Physics and Astronomy, University of St Andrews)

  • Malte C. Gather

    (SUPA, School of Physics and Astronomy, University of St Andrews)

Abstract

Molecular dyes, plasmonic nanoparticles and colloidal quantum dots are widely used in biomedical optics. Their operation is usually governed by spontaneous processes, which results in broad spectral features and limited signal-to-noise ratio, thus restricting opportunities for spectral multiplexing and sensing. Lasers provide the ultimate spectral definition and background suppression, and their integration with cells has recently been demonstrated. However, laser size and threshold remain problematic. Here, we report on the design, high-throughput fabrication and intracellular integration of semiconductor nanodisk lasers. By exploiting the large optical gain and high refractive index of GaInP/AlGaInP quantum wells, we obtain lasers with volumes 1000-fold smaller than the eukaryotic nucleus (Vlaser

Suggested Citation

  • Alasdair H. Fikouras & Marcel Schubert & Markus Karl & Jothi D. Kumar & Simon J. Powis & Andrea Di Falco & Malte C. Gather, 2018. "Non-obstructive intracellular nanolasers," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07248-0
    DOI: 10.1038/s41467-018-07248-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07248-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07248-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aljaž Kavčič & Maja Garvas & Matevž Marinčič & Katrin Unger & Anna Maria Coclite & Boris Majaron & Matjaž Humar, 2022. "Deep tissue localization and sensing using optical microcavity probes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yaping Wang & Marion C. Lang & Jinsong Lu & Mingqian Suo & Mengcong Du & Yubin Hou & Xiu-Hong Wang & Pu Wang, 2022. "Demonstration of intracellular real-time molecular quantification via FRET-enhanced optical microcavity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07248-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.