IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07192-z.html
   My bibliography  Save this article

High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster

Author

Listed:
  • Marko Pende

    (Vienna University of Technology
    Medical University of Vienna)

  • Klaus Becker

    (Vienna University of Technology
    Medical University of Vienna)

  • Martina Wanis

    (Vienna University of Technology
    University of Vienna)

  • Saiedeh Saghafi

    (Vienna University of Technology)

  • Rashmit Kaur

    (University of Vienna)

  • Christian Hahn

    (Vienna University of Technology
    Medical University of Vienna)

  • Nika Pende

    (University of Vienna)

  • Massih Foroughipour

    (Medical University of Vienna)

  • Thomas Hummel

    (University of Vienna)

  • Hans-Ulrich Dodt

    (Vienna University of Technology
    Medical University of Vienna)

Abstract

The fruit fly, Drosophila melanogaster, is an important experimental model to address central questions in neuroscience at an organismic level. However, imaging of neural circuits in intact fruit flies is limited due to structural properties of the cuticle. Here we present a novel approach combining tissue clearing, ultramicroscopy, and data analysis that enables the visualisation of neuronal networks with single-cell resolution from the larval stage up to the adult Drosophila. FlyClear, the signal preserving clearing technique we developed, stabilises tissue integrity and fluorescence signal intensity for over a month and efficiently removes the overall pigmentation. An aspheric ultramicroscope set-up utilising an improved light-sheet generator allows us to visualise long-range connections of peripheral sensory and central neurons in the visual and olfactory system. High-resolution 3D reconstructions with isotropic resolution from entire GFP-expressing flies are obtained by applying image fusion from orthogonal directions. This methodological integration of novel chemical, optical, and computational techniques allows a major advance in the analysis of global neural circuit organisation.

Suggested Citation

  • Marko Pende & Klaus Becker & Martina Wanis & Saiedeh Saghafi & Rashmit Kaur & Christian Hahn & Nika Pende & Massih Foroughipour & Thomas Hummel & Hans-Ulrich Dodt, 2018. "High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07192-z
    DOI: 10.1038/s41467-018-07192-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07192-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07192-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solomiia Korchynska & Patrick Rebernik & Marko Pende & Laura Boi & Alán Alpár & Ramon Tasan & Klaus Becker & Kira Balueva & Saiedeh Saghafi & Peer Wulff & Tamas L. Horvath & Gilberto Fisone & Hans-Ulr, 2022. "A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Samuel K. H. Sy & Danny C. W. Chan & Roy C. H. Chan & Jing Lyu & Zhongqi Li & Kenneth K. Y. Wong & Chung Hang Jonathan Choi & Vincent C. T. Mok & Hei-Ming Lai & Owen Randlett & Yu Hu & Ho Ko, 2023. "An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07192-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.