IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07135-8.html
   My bibliography  Save this article

Scalable high performance radio frequency electronics based on large domain bilayer MoS2

Author

Listed:
  • Qingguo Gao

    (Huazhong University of Science and Technology)

  • Zhenfeng Zhang

    (Huazhong University of Science and Technology)

  • Xiaole Xu

    (Huazhong University of Science and Technology)

  • Jian Song

    (Huazhong University of Science and Technology)

  • Xuefei Li

    (Huazhong University of Science and Technology)

  • Yanqing Wu

    (Huazhong University of Science and Technology)

Abstract

Atomically-thin layered molybdenum disulfide (MoS2) has attracted tremendous research attention for their potential applications in high performance DC and radio frequency electronics, especially for flexible electronics. Bilayer MoS2 is expected to have higher electron mobility and higher density of states with higher performance compared with single layer MoS2. Here, we systematically investigate the synthesis of high quality bilayer MoS2 by chemical vapor deposition on molten glass with increasing domain sizes up to 200 μm. High performance transistors with optimized high-κ dielectrics deliver ON-current of 427 μA μm−1 at 300 K and a record high ON-current of 1.52 mA μm−1 at 4.3 K. Moreover, radio frequency transistors are demonstrated with an extrinsic high cut-off frequency of 7.2 GHz and record high extrinsic maximum frequency of oscillation of 23 GHz, together with gigahertz MoS2 mixers on flexible polyimide substrate, showing the great potential for future high performance DC and high-frequency electronics.

Suggested Citation

  • Qingguo Gao & Zhenfeng Zhang & Xiaole Xu & Jian Song & Xuefei Li & Yanqing Wu, 2018. "Scalable high performance radio frequency electronics based on large domain bilayer MoS2," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07135-8
    DOI: 10.1038/s41467-018-07135-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07135-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07135-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manzhang Xu & Hongjia Ji & Lu Zheng & Weiwei Li & Jing Wang & Hanxin Wang & Lei Luo & Qianbo Lu & Xuetao Gan & Zheng Liu & Xuewen Wang & Wei Huang, 2024. "Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chao Chang & Xiaowen Zhang & Weixuan Li & Quanlin Guo & Zuo Feng & Chen Huang & Yunlong Ren & Yingying Cai & Xu Zhou & Jinhuan Wang & Zhilie Tang & Feng Ding & Wenya Wei & Kaihui Liu & Xiaozhi Xu, 2024. "Remote epitaxy of single-crystal rhombohedral WS2 bilayers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07135-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.