IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06655-7.html
   My bibliography  Save this article

Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy

Author

Listed:
  • Kaiyuan Ni

    (The University of Chicago)

  • Guangxu Lan

    (The University of Chicago)

  • Samuel S. Veroneau

    (The University of Chicago)

  • Xiaopin Duan

    (The University of Chicago)

  • Yang Song

    (The University of Chicago)

  • Wenbin Lin

    (The University of Chicago
    The University of Chicago)

Abstract

Selective delivery of photosensitizers to mitochondria of cancer cells can enhance the efficacy of photodynamic therapy (PDT). Though cationic Ru-based photosensitizers accumulate in mitochondria, they require excitation with less penetrating short-wavelength photons, limiting their application in PDT. We recently discovered X-ray based cancer therapy by nanoscale metal–organic frameworks (nMOFs) via enhancing radiotherapy (RT) and enabling radiodynamic therapy (RDT). Herein we report Hf-DBB-Ru as a mitochondria-targeted nMOF for RT-RDT. Constructed from Ru-based photosensitizers, the cationic framework exhibits strong mitochondria-targeting property. Upon X-ray irradiation, Hf-DBB-Ru efficiently generates hydroxyl radicals from the Hf6 SBUs and singlet oxygen from the DBB-Ru photosensitizers to lead to RT-RDT effects. Mitochondria-targeted RT-RDT depolarizes the mitochondrial membrane to initiate apoptosis of cancer cells, leading to significant regression of colorectal tumors in mouse models. Our work establishes an effective strategy to selectively target mitochondria with cationic nMOFs for enhanced cancer therapy via RT-RDT with low doses of deeply penetrating X-rays.

Suggested Citation

  • Kaiyuan Ni & Guangxu Lan & Samuel S. Veroneau & Xiaopin Duan & Yang Song & Wenbin Lin, 2018. "Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06655-7
    DOI: 10.1038/s41467-018-06655-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06655-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06655-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Wang & Wenjing Sun & Huifang Shi & Huili Ma & Guowei Niu & Yuxin Li & Jiahuan Zhi & Xiaokang Yao & Zhicheng Song & Lei Chen & Shi Li & Guohui Yang & Zixing Zhou & Yixiao He & Shuli Qu & Min Wu & , 2022. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Changjiang Hu & Zhiwen Jiang & Qunyan Wu & Shuiyan Cao & Qiuhao Li & Chong Chen & Liyong Yuan & Yunlong Wang & Wenyun Yang & Jinbo Yang & Jing Peng & Weiqun Shi & Maolin Zhai & Mehran Mostafavi & Jun , 2023. "Selective CO2 reduction to CH3OH over atomic dual-metal sites embedded in a metal-organic framework with high-energy radiation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Luyan Wu & Yusuke Ishigaki & Wenhui Zeng & Takashi Harimoto & Baoli Yin & Yinghan Chen & Shiyi Liao & Yongchun Liu & Yidan Sun & Xiaobo Zhang & Ying Liu & Yong Liang & Pengfei Sun & Takanori Suzuki & , 2021. "Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06655-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.