IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06232-y.html
   My bibliography  Save this article

Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency

Author

Listed:
  • Leiyi Chen

    (Chinese Academy of Sciences)

  • Li Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chao Mao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuqi Qin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jun Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Futing Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Sergey Blagodatsky

    (University of Hohenheim
    Russian Academy of Sciences)

  • Guibiao Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qiwen Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dianye Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jianchun Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuanhe Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Input of labile carbon may accelerate the decomposition of existing soil organic matter (priming effect), with the priming intensity depending on changes in soil nitrogen availability after permafrost thaw. However, experimental evidence for the linkage between the priming effect and post-thaw nitrogen availability is unavailable. Here we test the hypothesis that elevated nitrogen availability after permafrost collapse inhibits the priming effect by increasing microbial metabolic efficiency based on a combination of thermokarst-induced natural nitrogen gradient and nitrogen addition experiment. We find a negative correlation between the priming intensity and soil total dissolved nitrogen concentration along the thaw sequence. The negative effect is confirmed by the reduced priming effect after nitrogen addition. In contrast to the prevailing view, this nitrogen-regulated priming intensity is independent of extracellular enzyme activities but associated with microbial metabolic efficiency. These findings demonstrate that post-thaw nitrogen availability regulates topsoil carbon dynamics through its modification of microbial metabolic efficiency.

Suggested Citation

  • Leiyi Chen & Li Liu & Chao Mao & Shuqi Qin & Jun Wang & Futing Liu & Sergey Blagodatsky & Guibiao Yang & Qiwen Zhang & Dianye Zhang & Jianchun Yu & Yuanhe Yang, 2018. "Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06232-y
    DOI: 10.1038/s41467-018-06232-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06232-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06232-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Breidenbach & Per-Marten Schleuss & Shibin Liu & Dominik Schneider & Michaela A. Dippold & Tilman Haye & Georg Miehe & Felix Heitkamp & Elke Seeber & Kyle Mason-Jones & Xingliang Xu & Yang Hua, 2022. "Microbial functional changes mark irreversible course of Tibetan grassland degradation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sudakow, Ivan & Savenkova, Elena & Kondrashov, Dmitri & Vakulenko, Sergey A. & Sashina, Elena, 2023. "Diverse soil microbial communities may mitigate climate system bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Futing Liu & Shuqi Qin & Kai Fang & Leiyi Chen & Yunfeng Peng & Pete Smith & Yuanhe Yang, 2022. "Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06232-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.