IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05813-1.html
   My bibliography  Save this article

Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves

Author

Listed:
  • Yoshihiro Nakayama

    (California Institute of Technology)

  • Dimitris Menemenlis

    (California Institute of Technology)

  • Hong Zhang

    (California Institute of Technology
    University of Los Angeles)

  • Michael Schodlok

    (California Institute of Technology
    University of Los Angeles)

  • Eric Rignot

    (California Institute of Technology
    University of California, Irvine)

Abstract

Melting of West Antarctic ice shelves is enhanced by Circumpolar Deep Water (CDW) intruding onto the Amundsen and Bellingshausen Seas (ABS) continental shelves. Despite existing studies of cross-shelf and on-shelf CDW transports, CDW pathways onto the ABS originating from further offshore have never been investigated. Here, we investigate CDW pathways onto the ABS using a regional ocean model. Simulated CDW tracers from a zonal section across 67°S (S04P) circulate along the Antarctic Circumpolar Current (ACC) and Ross Gyre (RG) and travel into ABS continental shelf after 3–5 years, but source locations are shifted westward by ~900 km along S04P in 2001–2006 compared to 2009–2014. We find that simulated on- and off-shelf CDW is ~0.1–0.2 °C warmer in the 2009–2014 case than in the 2001–2006 case together with changes in simulated ocean circulation. These differences are primarily caused by lateral, rather than surface, boundary conditions, implying that large-scale atmospheric and ocean circulations are able to control CDW pathways and thus off- and on-shelf CDW properties.

Suggested Citation

  • Yoshihiro Nakayama & Dimitris Menemenlis & Hong Zhang & Michael Schodlok & Eric Rignot, 2018. "Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05813-1
    DOI: 10.1038/s41467-018-05813-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05813-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05813-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Taewook Park & Yoshihiro Nakayama & SungHyun Nam, 2024. "Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Tiago S. Dotto & Karen J. Heywood & Rob A. Hall & Ted A. Scambos & Yixi Zheng & Yoshihiro Nakayama & Shuntaro Hyogo & Tasha Snow & Anna K. Wåhlin & Christian Wild & Martin Truffer & Atsuhiro Muto & Ka, 2022. "Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05813-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.