IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05659-7.html
   My bibliography  Save this article

Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework

Author

Listed:
  • Zhi-Hao Yan

    (Xiamen University)

  • Ming-Hao Du

    (Xiamen University)

  • Junxue Liu

    (Chinese Academy of Sciences)

  • Shengye Jin

    (Chinese Academy of Sciences)

  • Cheng Wang

    (Xiamen University)

  • Gui-Lin Zhuang

    (Zhejiang University of Technology)

  • Xiang-Jian Kong

    (Xiamen University)

  • La-Sheng Long

    (Xiamen University)

  • Lan-Sun Zheng

    (Xiamen University)

Abstract

Photocatalytic reduction of CO2 is a promising approach to achieve solar-to-chemical energy conversion. However, traditional catalysts usually suffer from low efficiency, poor stability, and selectivity. Here we demonstrate that a large porous and stable metal-organic framework featuring dinuclear Eu(III)2 clusters as connecting nodes and Ru(phen)3-derived ligands as linkers is constructed to catalyze visible-light-driven CO2 reduction. Photo-excitation of the metalloligands initiates electron injection into the nodes to generate dinuclear {Eu(II)}2 active sites, which can selectively reduce CO2 to formate in a two-electron process with a remarkable rate of 321.9 μmol h−1 mmolMOF−1. The electron transfer from Ru metalloligands to Eu(III)2 catalytic centers are studied via transient absorption and theoretical calculations, shedding light on the photocatalytic mechanism. This work highlights opportunities in photo-generation of highly active lanthanide clusters stabilized in MOFs, which not only enables efficient photocatalysis but also facilitates mechanistic investigation of photo-driven charge separation processes.

Suggested Citation

  • Zhi-Hao Yan & Ming-Hao Du & Junxue Liu & Shengye Jin & Cheng Wang & Gui-Lin Zhuang & Xiang-Jian Kong & La-Sheng Long & Lan-Sun Zheng, 2018. "Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05659-7
    DOI: 10.1038/s41467-018-05659-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05659-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05659-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05659-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.