IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05559-w.html
   My bibliography  Save this article

ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response

Author

Listed:
  • Huan Lian

    (Wuhan University)

  • Jin Wei

    (Wuhan University)

  • Ru Zang

    (Wuhan University)

  • Wen Ye

    (Wuhan University)

  • Qing Yang

    (Wuhan University)

  • Xia-Nan Zhang

    (Wuhan University
    College of Life Sciences Wuhan University)

  • Yun-Da Chen

    (Wuhan University
    College of Life Sciences Wuhan University)

  • Yu-Zhi Fu

    (Chinese Academy of Sciences)

  • Ming-Ming Hu

    (Wuhan University)

  • Cao-Qi Lei

    (Wuhan University
    College of Life Sciences Wuhan University)

  • Wei-Wei Luo

    (Chinese Academy of Sciences)

  • Shu Li

    (Wuhan University)

  • Hong-Bing Shu

    (Wuhan University
    College of Life Sciences Wuhan University)

Abstract

Cyclic GMP-AMP synthase (cGAS) senses double-strand (ds) DNA in the cytosol and then catalyzes synthesis of the second messenger cGAMP, which activates the adaptor MITA/STING to initiate innate antiviral response. How cGAS activity is regulated remains enigmatic. Here, we identify ZCCHC3, a CCHC-type zinc-finger protein, as a positive regulator of cytosolic dsDNA- and DNA virus-triggered signaling. We show that ZCCHC3-deficiency inhibits dsDNA- and DNA virus-triggered induction of downstream effector genes, and that ZCCHC3-deficient mice are more susceptible to lethal herpes simplex virus type 1 or vaccinia virus infection. ZCCHC3 directly binds to dsDNA, enhances the binding of cGAS to dsDNA, and is important for cGAS activation following viral infection. Our results suggest that ZCCHC3 is a co-sensor for recognition of dsDNA by cGAS, which is important for efficient innate immune response to cytosolic dsDNA and DNA virus.

Suggested Citation

  • Huan Lian & Jin Wei & Ru Zang & Wen Ye & Qing Yang & Xia-Nan Zhang & Yun-Da Chen & Yu-Zhi Fu & Ming-Ming Hu & Cao-Qi Lei & Wei-Wei Luo & Shu Li & Hong-Bing Shu, 2018. "ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05559-w
    DOI: 10.1038/s41467-018-05559-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05559-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05559-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beibei Fu & Yan Xiong & Zhou Sha & Weiwei Xue & Binbin Xu & Shun Tan & Dong Guo & Feng Lin & Lulu Wang & Jianjian Ji & Yang Luo & Xiaoyuan Lin & Haibo Wu, 2023. "SEPTIN2 suppresses an IFN-γ-independent, proinflammatory macrophage activation pathway," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Zehua Shang & Sitao Zhang & Jinrui Wang & Lili Zhou & Xinyue Zhang & Daniel D. Billadeau & Peiguo Yang & Lingqiang Zhang & Fangfang Zhou & Peng Bai & Da Jia, 2024. "TRIM25 predominately associates with anti-viral stress granules," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Maja Olecka & Alena Bömmel & Lena Best & Madlen Haase & Silke Foerste & Konstantin Riege & Thomas Dost & Stefano Flor & Otto W. Witte & Sören Franzenburg & Marco Groth & Björn Eyss & Christoph Kaleta , 2024. "Nonlinear DNA methylation trajectories in aging male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Meihua Jin & Hiroki Shiwaku & Hikari Tanaka & Takayuki Obita & Sakurako Ohuchi & Yuki Yoshioka & Xiaocen Jin & Kanoh Kondo & Kyota Fujita & Hidenori Homma & Kazuyuki Nakajima & Mineyuki Mizuguchi & Hi, 2021. "Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation," Nature Communications, Nature, vol. 12(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05559-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.