IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05531-8.html
   My bibliography  Save this article

Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites

Author

Listed:
  • Hairen Tan

    (University of Toronto
    Nanjing University)

  • Fanglin Che

    (University of Toronto)

  • Mingyang Wei

    (University of Toronto)

  • Yicheng Zhao

    (University of Toronto)

  • Makhsud I. Saidaminov

    (University of Toronto)

  • Petar Todorović

    (University of Toronto)

  • Danny Broberg

    (University of California
    Lawrence Berkeley National Laboratory)

  • Grant Walters

    (University of Toronto)

  • Furui Tan

    (University of Toronto
    Henan University)

  • Taotao Zhuang

    (University of Toronto)

  • Bin Sun

    (University of Toronto)

  • Zhiqin Liang

    (University of Toronto)

  • Haifeng Yuan

    (University of Toronto
    KU Leuven)

  • Eduard Fron

    (KU Leuven)

  • Junghwan Kim

    (University of Toronto)

  • Zhenyu Yang

    (University of Toronto)

  • Oleksandr Voznyy

    (University of Toronto)

  • Mark Asta

    (University of California
    Lawrence Berkeley National Laboratory)

  • Edward H. Sargent

    (University of Toronto)

Abstract

Efficient wide-bandgap perovskite solar cells (PSCs) enable high-efficiency tandem photovoltaics when combined with crystalline silicon and other low-bandgap absorbers. However, wide-bandgap PSCs today exhibit performance far inferior to that of sub-1.6-eV bandgap PSCs due to their tendency to form a high density of deep traps. Here, we show that healing the deep traps in wide-bandgap perovskites—in effect, increasing the defect tolerance via cation engineering—enables further performance improvements in PSCs. We achieve a stabilized power conversion efficiency of 20.7% for 1.65-eV bandgap PSCs by incorporating dipolar cations, with a high open-circuit voltage of 1.22 V and a fill factor exceeding 80%. We also obtain a stabilized efficiency of 19.1% for 1.74-eV bandgap PSCs with a high open-circuit voltage of 1.25 V. From density functional theory calculations, we find that the presence and reorientation of the dipolar cation in mixed cation–halide perovskites heals the defects that introduce deep trap states.

Suggested Citation

  • Hairen Tan & Fanglin Che & Mingyang Wei & Yicheng Zhao & Makhsud I. Saidaminov & Petar Todorović & Danny Broberg & Grant Walters & Furui Tan & Taotao Zhuang & Bin Sun & Zhiqin Liang & Haifeng Yuan & E, 2018. "Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05531-8
    DOI: 10.1038/s41467-018-05531-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05531-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05531-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Daniele Catone & Giuseppe Ammirati & Patrick O’Keeffe & Faustino Martelli & Lorenzo Di Mario & Stefano Turchini & Alessandra Paladini & Francesco Toschi & Antonio Agresti & Sara Pescetelli & Aldo Di C, 2021. "Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites," Energies, MDPI, vol. 14(3), pages 1-14, January.
    3. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    4. Muneeza Ahmad & Nadia Shahzad & Muhammad Ali Tariq & Abdul Sattar & Diego Pugliese, 2021. "Investigating the Sequential Deposition Route for Mixed Cation Mixed Halide Wide Bandgap Perovskite Absorber Layer," Energies, MDPI, vol. 14(24), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05531-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.