IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05524-7.html
   My bibliography  Save this article

Automated single-molecule imaging in living cells

Author

Listed:
  • Masato Yasui

    (Laboratory for Cell Signaling Dynamics, RIKEN BDR)

  • Michio Hiroshima

    (Laboratory for Cell Signaling Dynamics, RIKEN BDR
    Cellular Informatics Laboratory, RIKEN)

  • Jun Kozuka

    (Laboratory for Cell Signaling Dynamics, RIKEN BDR)

  • Yasushi Sako

    (Cellular Informatics Laboratory, RIKEN)

  • Masahiro Ueda

    (Laboratory for Cell Signaling Dynamics, RIKEN BDR
    Osaka University)

Abstract

An automated single-molecule imaging system developed for live-cell analyses based on artificial intelligence-assisted microscopy is presented. All significant procedures, i.e., searching for cells suitable for observation, detecting in-focus positions, and performing image acquisition and single-molecule tracking, are fully automated, and numerous highly accurate, efficient, and reproducible single-molecule imaging experiments in living cells can be performed. Here, the apparatus is applied for single-molecule imaging and analysis of epidermal growth factor receptors (EGFRs) in 1600 cells in a 96-well plate within 1 day. Changes in the lateral mobility of EGFRs on the plasma membrane in response to various ligands and drug concentrations are clearly detected in individual cells, and several dynamic and pharmacological parameters are determined, including the diffusion coefficient, oligomer size, and half-maximal effective concentration (EC50). Automated single-molecule imaging for systematic cell signaling analyses is feasible and can be applied to single-molecule screening, thus extensively contributing to biological and pharmacological research.

Suggested Citation

  • Masato Yasui & Michio Hiroshima & Jun Kozuka & Yasushi Sako & Masahiro Ueda, 2018. "Automated single-molecule imaging in living cells," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05524-7
    DOI: 10.1038/s41467-018-05524-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05524-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05524-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael G. Sugiyama & Aidan I. Brown & Jesus Vega-Lugo & Jazlyn P. Borges & Andrew M. Scott & Khuloud Jaqaman & Gregory D. Fairn & Costin N. Antonescu, 2023. "Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Tatsat Banerjee & Satomi Matsuoka & Debojyoti Biswas & Yuchuan Miao & Dhiman Sankar Pal & Yoichiro Kamimura & Masahiro Ueda & Peter N. Devreotes & Pablo A. Iglesias, 2023. "A dynamic partitioning mechanism polarizes membrane protein distribution," Nature Communications, Nature, vol. 14(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05524-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.