IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53432-w.html
   My bibliography  Save this article

Single molecule tracking based drug screening

Author

Listed:
  • Daisuke Watanabe

    (Osaka University
    RIKEN)

  • Michio Hiroshima

    (Osaka University
    RIKEN)

  • Masato Yasui

    (ZIDO Corporation)

  • Masahiro Ueda

    (Osaka University
    RIKEN
    Osaka University)

Abstract

The single-molecule tracking of transmembrane receptors in living cells has provided significant insights into signaling mechanisms, such as mobility and clustering upon their activation/inactivation, making it a potential screening method for drug discovery. Here we show that single-molecule tracking-based screening can be used to explore compounds both detectable and undetectable by conventional methods for disease-related receptors. Using an automated system for a fast large-scale single-molecule analysis, we screen for epidermal growth factor receptor (EGFR) from 1134 of FDA approved drugs. The 18 hit compounds include all EGFR-targeted tyrosine kinase inhibitors (TKIs) in the library that suppress any phosphorylation-dependent mobility shift of EGFR, proving the concept of this approach. The remaining hit compounds are not reported as EGFR-targeted drugs and do not inhibit EGF-induced EGFR phosphorylation. These non-TKI compounds affect the mobility and/or clustering of EGFR without EGF and induce EGFR internalization, to impede EGFR-dependent cell growth. Thus, single-molecule tracking provides an alternative modality for discovering therapeutics on various receptor functions with previously untargeted mechanisms.

Suggested Citation

  • Daisuke Watanabe & Michio Hiroshima & Masato Yasui & Masahiro Ueda, 2024. "Single molecule tracking based drug screening," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53432-w
    DOI: 10.1038/s41467-024-53432-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53432-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53432-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masato Yasui & Michio Hiroshima & Jun Kozuka & Yasushi Sako & Masahiro Ueda, 2018. "Automated single-molecule imaging in living cells," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. E. Bourseau-Guilmain & J. A. Menard & E. Lindqvist & V. Indira Chandran & H. C. Christianson & M. Cerezo Magaña & J. Lidfeldt & G. Marko-Varga & C. Welinder & M. Belting, 2016. "Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrícia M. R. Pereira & Komal Mandleywala & Sébastien Monette & Melissa Lumish & Kathryn M. Tully & Sandeep Surendra Panikar & Mike Cornejo & Audrey Mauguen & Ashwin Ragupathi & Nai C. Keltee & Maris, 2022. "Caveolin-1 temporal modulation enhances antibody drug efficacy in heterogeneous gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Michael G. Sugiyama & Aidan I. Brown & Jesus Vega-Lugo & Jazlyn P. Borges & Andrew M. Scott & Khuloud Jaqaman & Gregory D. Fairn & Costin N. Antonescu, 2023. "Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Tatsat Banerjee & Satomi Matsuoka & Debojyoti Biswas & Yuchuan Miao & Dhiman Sankar Pal & Yoichiro Kamimura & Masahiro Ueda & Peter N. Devreotes & Pablo A. Iglesias, 2023. "A dynamic partitioning mechanism polarizes membrane protein distribution," Nature Communications, Nature, vol. 14(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53432-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.