IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05382-3.html
   My bibliography  Save this article

Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction

Author

Listed:
  • Sebastiano Bariselli

    (University of Geneva)

  • Hanna Hörnberg

    (Biozentrum of the University of Basel)

  • Clément Prévost-Solié

    (University of Geneva)

  • Stefano Musardo

    (University of Geneva)

  • Laetitia Hatstatt-Burklé

    (Biozentrum of the University of Basel)

  • Peter Scheiffele

    (Biozentrum of the University of Basel)

  • Camilla Bellone

    (University of Geneva)

Abstract

Atypical habituation and aberrant exploration of novel stimuli have been related to the severity of autism spectrum disorders (ASDs), but the underlying neuronal circuits are unknown. Here we show that chemogenetic inhibition of dopamine (DA) neurons of the ventral tegmental area (VTA) attenuates exploration toward nonfamiliar conspecifics and interferes with the reinforcing properties of nonfamiliar conspecific interaction in mice. Exploration of nonfamiliar stimuli is associated with the insertion of GluA2-lacking AMPA receptors at excitatory synapses on VTA DA neurons. These synaptic adaptations persist upon repeated exposure to social stimuli and sustain conspecific interaction. Global or VTA DA neuron-specific loss of the ASD-associated synaptic adhesion molecule neuroligin 3 alters the behavioral response toward nonfamiliar conspecifics and the reinforcing properties of conspecific interaction. These behavioral deficits are accompanied by an aberrant expression of AMPA receptors and an occlusion of synaptic plasticity. Altogether, these findings link impaired exploration of nonfamiliar conspecifics to VTA DA neuron dysfunction in mice.

Suggested Citation

  • Sebastiano Bariselli & Hanna Hörnberg & Clément Prévost-Solié & Stefano Musardo & Laetitia Hatstatt-Burklé & Peter Scheiffele & Camilla Bellone, 2018. "Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05382-3
    DOI: 10.1038/s41467-018-05382-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05382-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05382-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clément Solié & Alessandro Contestabile & Pedro Espinosa & Stefano Musardo & Sebastiano Bariselli & Chieko Huber & Alan Carleton & Camilla Bellone, 2022. "Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Susanna Molas & Timothy G. Freels & Rubing Zhao-Shea & Timothy Lee & Pablo Gimenez-Gomez & Melanie Barbini & Gilles E. Martin & Andrew R. Tapper, 2024. "Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05382-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.