IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05261-x.html
   My bibliography  Save this article

Systems analysis of intracellular pH vulnerabilities for cancer therapy

Author

Listed:
  • Erez Persi

    (Tel-Aviv University
    University of Maryland)

  • Miquel Duran-Frigola

    (The Barcelona Institute of Science and Technology)

  • Mehdi Damaghi

    (Moffitt Cancer Center and Research Institute
    University of South Florida)

  • William R. Roush

    (The Scripps Research Institute)

  • Patrick Aloy

    (The Barcelona Institute of Science and Technology
    Institució Catalana de Recerca i Estudis Avançats (ICREA))

  • John L. Cleveland

    (Moffitt Cancer Center & Research Institute)

  • Robert J. Gillies

    (Moffitt Cancer Center and Research Institute)

  • Eytan Ruppin

    (National Cancer Institute, National Institutes of Health)

Abstract

A reverse pH gradient is a hallmark of cancer metabolism, manifested by extracellular acidosis and intracellular alkalization. While consequences of extracellular acidosis are known, the roles of intracellular alkalization are incompletely understood. By reconstructing and integrating enzymatic pH-dependent activity profiles into cell-specific genome-scale metabolic models, we develop a computational methodology that explores how intracellular pH (pHi) can modulate metabolism. We show that in silico, alkaline pHi maximizes cancer cell proliferation coupled to increased glycolysis and adaptation to hypoxia (i.e., the Warburg effect), whereas acidic pHi disables these adaptations and compromises tumor cell growth. We then systematically identify metabolic targets (GAPDH and GPI) with predicted amplified anti-cancer effects at acidic pHi, forming a novel therapeutic strategy. Experimental testing of this strategy in breast cancer cells reveals that it is particularly effective against aggressive phenotypes. Hence, this study suggests essential roles of pHi in cancer metabolism and provides a conceptual and computational framework for exploring pHi roles in other biomedical domains.

Suggested Citation

  • Erez Persi & Miquel Duran-Frigola & Mehdi Damaghi & William R. Roush & Patrick Aloy & John L. Cleveland & Robert J. Gillies & Eytan Ruppin, 2018. "Systems analysis of intracellular pH vulnerabilities for cancer therapy," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05261-x
    DOI: 10.1038/s41467-018-05261-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05261-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05261-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Gu & Sara Alam & Snezhana Oliferenko, 2023. "Peroxisomal compartmentalization of amino acid biosynthesis reactions imposes an upper limit on compartment size," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Clément Adam & Léa Paolini & Naïg Gueguen & Guillaume Mabilleau & Laurence Preisser & Simon Blanchard & Pascale Pignon & Florence Manero & Morgane Mao & Alain Morel & Pascal Reynier & Céline Beauvilla, 2021. "Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05261-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.