IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04920-3.html
   My bibliography  Save this article

Task-induced brain state manipulation improves prediction of individual traits

Author

Listed:
  • Abigail S. Greene

    (Yale School of Medicine)

  • Siyuan Gao

    (Yale School of Engineering and Applied Science)

  • Dustin Scheinost

    (Yale School of Medicine)

  • R. Todd Constable

    (Yale School of Medicine
    Yale School of Medicine
    Yale School of Medicine)

Abstract

Recent work has begun to relate individual differences in brain functional organization to human behaviors and cognition, but the best brain state to reveal such relationships remains an open question. In two large, independent data sets, we here show that cognitive tasks amplify trait-relevant individual differences in patterns of functional connectivity, such that predictive models built from task fMRI data outperform models built from resting-state fMRI data. Further, certain tasks consistently yield better predictions of fluid intelligence than others, and the task that generates the best-performing models varies by sex. By considering task-induced brain state and sex, the best-performing model explains over 20% of the variance in fluid intelligence scores, as compared to

Suggested Citation

  • Abigail S. Greene & Siyuan Gao & Dustin Scheinost & R. Todd Constable, 2018. "Task-induced brain state manipulation improves prediction of individual traits," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04920-3
    DOI: 10.1038/s41467-018-04920-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04920-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04920-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Souza, Erick Almeida & Silva, Stéphanie Andrade & Vieira, Bruno Hebling & Salmon, Carlos Ernesto Garrido, 2023. "fMRI functional connectivity is a better predictor of general intelligence than cortical morphometric features and ICA parcellation order affects predictive performance," Intelligence, Elsevier, vol. 97(C).
    2. Hilger, Kirsten & Spinath, Frank M. & Troche, Stefan & Schubert, Anna-Lena, 2022. "The biological basis of intelligence: Benchmark findings," Intelligence, Elsevier, vol. 93(C).
    3. Junjiao Feng & Liang Zhang & Chunhui Chen & Jintao Sheng & Zhifang Ye & Kanyin Feng & Jing Liu & Ying Cai & Bi Zhu & Zhaoxia Yu & Chuansheng Chen & Qi Dong & Gui Xue, 2022. "A cognitive neurogenetic approach to uncovering the structure of executive functions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Vieira, Bruno Hebling & Pamplona, Gustavo Santo Pedro & Fachinello, Karim & Silva, Alice Kamensek & Foss, Maria Paula & Salmon, Carlos Ernesto Garrido, 2022. "On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting," Intelligence, Elsevier, vol. 93(C).
    5. Jianzhong Chen & Angela Tam & Valeria Kebets & Csaba Orban & Leon Qi Rong Ooi & Christopher L. Asplund & Scott Marek & Nico U. F. Dosenbach & Simon B. Eickhoff & Danilo Bzdok & Avram J. Holmes & B. T., 2022. "Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04920-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.