IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04876-4.html
   My bibliography  Save this article

Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise

Author

Listed:
  • L. Menviel

    (University of New South Wales
    Macquarie University)

  • P. Spence

    (University of New South Wales)

  • J. Yu

    (The Australian National University)

  • M. A. Chamberlain

    (CSIRO Oceans and Atmosphere)

  • R. J. Matear

    (CSIRO Oceans and Atmosphere)

  • K. J. Meissner

    (University of New South Wales)

  • M. H. England

    (University of New South Wales)

Abstract

The early part of the last deglaciation is characterised by a ~40 ppm atmospheric CO2 rise occurring in two abrupt phases. The underlying mechanisms driving these increases remain a subject of intense debate. Here, we successfully reproduce changes in CO2, δ13C and Δ14C as recorded by paleo-records during Heinrich stadial 1 (HS1). We show that HS1 CO2 increase can be explained by enhanced Southern Ocean upwelling of carbon-rich Pacific deep and intermediate waters, resulting from intensified Southern Ocean convection and Southern Hemisphere (SH) westerlies. While enhanced Antarctic Bottom Water formation leads to a millennial CO2 outgassing, intensified SH westerlies induce a multi-decadal atmospheric CO2 rise. A strengthening of SH westerlies in a global eddy-permitting ocean model further supports a multi-decadal CO2 outgassing from the Southern Ocean. Our results highlight the crucial role of SH westerlies in the global climate and carbon cycle system with important implications for future climate projections.

Suggested Citation

  • L. Menviel & P. Spence & J. Yu & M. A. Chamberlain & R. J. Matear & K. J. Meissner & M. H. England, 2018. "Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04876-4
    DOI: 10.1038/s41467-018-04876-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04876-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04876-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gagan Mandal & Jia-Yuh Yu & Shih-Yu Lee, 2022. "The Roles of Orbital and Meltwater Climate Forcings on the Southern Ocean Dynamics during the Last Deglaciation," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    2. Shantong Sun & Andrew F. Thompson & Jimin Yu & Lixin Wu, 2024. "Transient overturning changes cause an upper-ocean nutrient decline in a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Shinya Iwasaki & Lester Lembke-Jene & Kana Nagashima & Helge W. Arz & Naomi Harada & Katsunori Kimoto & Frank Lamy, 2022. "Evidence for late-glacial oceanic carbon redistribution and discharge from the Pacific Southern Ocean," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zhengquan Yao & Xuefa Shi & Qiuzhen Yin & Samuel Jaccard & Yanguang Liu & Zhengtang Guo & Sergey A. Gorbarenko & Kunshan Wang & Tianyu Chen & Zhipeng Wu & Qingyun Nan & Jianjun Zou & Hongmin Wang & Ji, 2024. "Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Yuhao Dai & Jimin Yu & Haojia Ren & Xuan Ji, 2022. "Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Gagan Mandal & Shih-Yu Lee & Jia-Yuh Yu, 2021. "The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study," Sustainability, MDPI, vol. 13(1), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04876-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.