IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04639-1.html
   My bibliography  Save this article

Gut vagal sensory signaling regulates hippocampus function through multi-order pathways

Author

Listed:
  • Andrea N. Suarez

    (University of Southern California)

  • Ted M. Hsu

    (University of Southern California
    University of Illinois at Chicago)

  • Clarissa M. Liu

    (University of Southern California
    University of Southern California)

  • Emily E. Noble

    (University of Southern California)

  • Alyssa M. Cortella

    (University of Southern California)

  • Emily M. Nakamoto

    (University of Southern California)

  • Joel D. Hahn

    (University of Southern California)

  • Guillaume Lartigue

    (The John B. Pierce Laboratory
    Yale Medical School)

  • Scott E. Kanoski

    (University of Southern California
    University of Southern California
    University of Southern California)

Abstract

The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem–septal pathway, thereby identifying a previously unknown role for the gut–brain axis in memory control.

Suggested Citation

  • Andrea N. Suarez & Ted M. Hsu & Clarissa M. Liu & Emily E. Noble & Alyssa M. Cortella & Emily M. Nakamoto & Joel D. Hahn & Guillaume Lartigue & Scott E. Kanoski, 2018. "Gut vagal sensory signaling regulates hippocampus function through multi-order pathways," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04639-1
    DOI: 10.1038/s41467-018-04639-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04639-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04639-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toya Okonogi & Nahoko Kuga & Musashi Yamakawa & Tasuku Kayama & Yuji Ikegaya & Takuya Sasaki, 2024. "Stress-induced vagal activity influences anxiety-relevant prefrontal and amygdala neuronal oscillations in male mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yuni Kay & Linda Tsan & Elizabeth A. Davis & Chen Tian & Léa Décarie-Spain & Anastasiia Sadybekov & Anna N. Pushkin & Vsevolod Katritch & Scott E. Kanoski & Bruce E. Herring, 2022. "Schizophrenia-associated SAP97 mutations increase glutamatergic synapse strength in the dentate gyrus and impair contextual episodic memory in rats," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04639-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.