IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04300-x.html
   My bibliography  Save this article

Structural basis for the recognition of complex-type N-glycans by Endoglycosidase S

Author

Listed:
  • Beatriz Trastoy

    (CIC bioGUNE)

  • Erik Klontz

    (University of Maryland School of Medicine
    University of Maryland School of Medicine)

  • Jared Orwenyo

    (University of Maryland)

  • Alberto Marina

    (CIC bioGUNE)

  • Lai-Xi Wang

    (University of Maryland)

  • Eric J. Sundberg

    (University of Maryland School of Medicine
    University of Maryland School of Medicine
    University of Maryland School of Medicine)

  • Marcelo E. Guerin

    (CIC bioGUNE
    Centro Mixto Consejo Superior de Investigaciones Científicas—Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU)
    Universidad del País Vasco
    IKERBASQUE, Basque Foundation for Science)

Abstract

Endoglycosidase S (EndoS) is a bacterial endo-β-N-acetylglucosaminidase that specifically catalyzes the hydrolysis of the β-1,4 linkage between the first two N-acetylglucosamine residues of the biantennary complex-type N-linked glycans of IgG Fc regions. It is used for the chemoenzymatic synthesis of homogeneously glycosylated antibodies with improved therapeutic properties, but the molecular basis for its substrate specificity is unknown. Here, we report the crystal structure of the full-length EndoS in complex with its oligosaccharide G2 product. The glycoside hydrolase domain contains two well-defined asymmetric grooves that accommodate the complex-type N-linked glycan antennae near the active site. Several loops shape the glycan binding site, thereby governing the strict substrate specificity of EndoS. Comparing the arrangement of these loops within EndoS and related endoglycosidases, reveals distinct-binding site architectures that correlate with the respective glycan specificities, providing a basis for the bioengineering of endoglycosidases to tailor the chemoenzymatic synthesis of monoclonal antibodies.

Suggested Citation

  • Beatriz Trastoy & Erik Klontz & Jared Orwenyo & Alberto Marina & Lai-Xi Wang & Eric J. Sundberg & Marcelo E. Guerin, 2018. "Structural basis for the recognition of complex-type N-glycans by Endoglycosidase S," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04300-x
    DOI: 10.1038/s41467-018-04300-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04300-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04300-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikel García-Alija & Jonathan J. Du & Izaskun Ordóñez & Asier Diz-Vallenilla & Alicia Moraleda-Montoya & Nazneen Sultana & Chau G. Huynh & Chao Li & Thomas Connor Donahue & Lai-Xi Wang & Beatriz Trast, 2022. "Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Itxaso Anso & Andreas Naegeli & Javier O. Cifuente & Ane Orrantia & Erica Andersson & Olatz Zenarruzabeitia & Alicia Moraleda-Montoya & Mikel García-Alija & Francisco Corzana & Rafael A. Orbe & Franci, 2023. "Turning universal O into rare Bombay type blood," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04300-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.