IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04046-6.html
   My bibliography  Save this article

High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators

Author

Listed:
  • Attila Fülöp

    (Chalmers University of Technology)

  • Mikael Mazur

    (Chalmers University of Technology)

  • Abel Lorences-Riesgo

    (Chalmers University of Technology
    IT-Instituto de Telecomunicações)

  • Óskar B. Helgason

    (Chalmers University of Technology)

  • Pei-Hsun Wang

    (Purdue University)

  • Yi Xuan

    (Purdue University
    Purdue University)

  • Dan E. Leaird

    (Purdue University)

  • Minghao Qi

    (Purdue University
    Purdue University)

  • Peter A. Andrekson

    (Chalmers University of Technology)

  • Andrew M. Weiner

    (Purdue University
    Purdue University)

  • Victor Torres-Company

    (Chalmers University of Technology)

Abstract

Microresonator frequency combs harness the nonlinear Kerr effect in an integrated optical cavity to generate a multitude of phase-locked frequency lines. The line spacing can reach values in the order of 100 GHz, making it an attractive multi-wavelength light source for applications in fiber-optic communications. Depending on the dispersion of the microresonator, different physical dynamics have been observed. A recently discovered comb state corresponds to the formation of mode-locked dark pulses in a normal-dispersion microcavity. Such dark-pulse combs are particularly compelling for advanced coherent communications since they display unusually high power-conversion efficiency. Here, we report the first coherent-transmission experiments using 64-quadrature amplitude modulation encoded onto the frequency lines of a dark-pulse comb. The high conversion efficiency of the comb enables transmitted optical signal-to-noise ratios above 33 dB, while maintaining a laser pump power level compatible with state-of-the-art hybrid silicon lasers.

Suggested Citation

  • Attila Fülöp & Mikael Mazur & Abel Lorences-Riesgo & Óskar B. Helgason & Pei-Hsun Wang & Yi Xuan & Dan E. Leaird & Minghao Qi & Peter A. Andrekson & Andrew M. Weiner & Victor Torres-Company, 2018. "High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04046-6
    DOI: 10.1038/s41467-018-04046-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04046-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04046-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanbin Liu & Hongyi Zhang & Jiacheng Liu & Liangjun Lu & Jiangbing Du & Yu Li & Zuyuan He & Jianping Chen & Linjie Zhou & Andrew W. Poon, 2024. "Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Miles H. Anderson & Wenle Weng & Grigory Lihachev & Alexey Tikan & Junqiu Liu & Tobias J. Kippenberg, 2022. "Zero dispersion Kerr solitons in optical microresonators," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04046-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.