IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03881-x.html
   My bibliography  Save this article

Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote

Author

Listed:
  • Yueyong Xin

    (Hangzhou Normal University)

  • Yang Shi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tongxin Niu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qingqiang Wang

    (Hangzhou Normal University)

  • Wanqiang Niu

    (Hangzhou Normal University)

  • Xiaojun Huang

    (Chinese Academy of Sciences)

  • Wei Ding

    (Chinese Academy of Sciences)

  • Lei Yang

    (Hangzhou Normal University)

  • Robert E. Blankenship

    (Washington University in St. Louis)

  • Xiaoling Xu

    (Hangzhou Normal University)

  • Fei Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Photosynthetic prokaryotes evolved diverse light-harvesting (LH) antennas to absorb sunlight and transfer energy to reaction centers (RC). The filamentous anoxygenic phototrophs (FAPs) are important early branching photosynthetic bacteria in understanding the origin and evolution of photosynthesis. How their photosynthetic machinery assembles for efficient energy transfer is yet to be elucidated. Here, we report the 4.1 Å structure of photosynthetic core complex from Roseiflexus castenholzii by cryo-electron microscopy. The RC–LH complex has a tetra-heme cytochrome c bound RC encompassed by an elliptical LH ring that is assembled from 15 LHαβ subunits. An N-terminal transmembrane helix of cytochrome c inserts into the LH ring, not only yielding a tightly bound cytochrome c for rapid electron transfer, but also opening a slit in the LH ring, which is further flanked by a transmembrane helix from a newly discovered subunit X. These structural features suggest an unusual quinone exchange model of prokaryotic photosynthetic machinery.

Suggested Citation

  • Yueyong Xin & Yang Shi & Tongxin Niu & Qingqiang Wang & Wanqiang Niu & Xiaojun Huang & Wei Ding & Lei Yang & Robert E. Blankenship & Xiaoling Xu & Fei Sun, 2018. "Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03881-x
    DOI: 10.1038/s41467-018-03881-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03881-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03881-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazutoshi Tani & Kenji V. P. Nagashima & Ryo Kanno & Saki Kawamura & Riku Kikuchi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Michael T. Madigan & Akira Mizoguchi & Bruno M. Humbel & Zheng-Y, 2021. "A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Shishang Dong & Guoqiang Huang & Changhui Wang & Jiajia Wang & Sen-Fang Sui & Xiaochun Qin, 2022. "Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Peng Cao & Laura Bracun & Atsushi Yamagata & Bern M. Christianson & Tatsuki Negami & Baohua Zou & Tohru Terada & Daniel P. Canniffe & Mikako Shirouzu & Mei Li & Lu-Ning Liu, 2022. "Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC–LH1 supercomplex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03881-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.