IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03847-z.html
   My bibliography  Save this article

Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform

Author

Listed:
  • Xiaogang Wang

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Christopher D. Thompson

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Christopher Weidenmaier

    (University of Tuebingen
    Partner Site Tuebingen)

  • Jean C. Lee

    (Brigham and Women’s Hospital and Harvard Medical School)

Abstract

Secretion of extracellular vesicles (EVs), a process common to eukaryotes, archae, and bacteria, represents a secretory pathway that allows cell-free intercellular communication. Microbial EVs package diverse proteins and influence the host-pathogen interaction, but the mechanisms underlying EV production in Gram-positive bacteria are poorly understood. Here we show that EVs purified from community-associated methicillin-resistant Staphylococcus aureus package cytosolic, surface, and secreted proteins, including cytolysins. Staphylococcal alpha-type phenol-soluble modulins promote EV biogenesis by disrupting the cytoplasmic membrane; whereas, peptidoglycan cross-linking and autolysin activity modulate EV production by altering the permeability of the cell wall. We demonstrate that EVs purified from a S. aureus mutant that is genetically engineered to express detoxified cytolysins are immunogenic in mice, elicit cytolysin-neutralizing antibodies, and protect the animals in a lethal sepsis model. Our study reveals mechanisms underlying S. aureus EV production and highlights the usefulness of EVs as a S. aureus vaccine platform.

Suggested Citation

  • Xiaogang Wang & Christopher D. Thompson & Christopher Weidenmaier & Jean C. Lee, 2018. "Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03847-z
    DOI: 10.1038/s41467-018-03847-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03847-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03847-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nele De Langhe & Sofie Van Dorpe & Niké Guilbert & Amélie Vander Cruyssen & Quentin Roux & Sarah Deville & Sándor Dedeyne & Philippe Tummers & Hannelore Denys & Linos Vandekerckhove & Olivier De Wever, 2024. "Mapping bacterial extracellular vesicle research: insights, best practices and knowledge gaps," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03847-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.