IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03466-8.html
   My bibliography  Save this article

Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes

Author

Listed:
  • Yu Gu

    (Xiamen University)

  • Wei-Wei Wang

    (Xiamen University)

  • Yi-Juan Li

    (Xiamen University)

  • Qi-Hui Wu

    (Quanzhou Normal University)

  • Shuai Tang

    (Xiamen University)

  • Jia-Wei Yan

    (Xiamen University)

  • Ming-Sen Zheng

    (Xiamen University)

  • De-Yin Wu

    (Xiamen University)

  • Chun-Hai Fan

    (Chinese Academy of Sciences)

  • Wei-Qiang Hu

    (Xiamen University)

  • Zhao-Bin Chen

    (Xiamen University)

  • Yuan Fang

    (Xiamen University)

  • Qing-Hong Zhang

    (Xiamen University)

  • Quan-Feng Dong

    (Xiamen University)

  • Bing-Wei Mao

    (Xiamen University)

Abstract

Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm–2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

Suggested Citation

  • Yu Gu & Wei-Wei Wang & Yi-Juan Li & Qi-Hui Wu & Shuai Tang & Jia-Wei Yan & Ming-Sen Zheng & De-Yin Wu & Chun-Hai Fan & Wei-Qiang Hu & Zhao-Bin Chen & Yuan Fang & Qing-Hong Zhang & Quan-Feng Dong & Bin, 2018. "Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03466-8
    DOI: 10.1038/s41467-018-03466-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03466-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03466-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Gu & En-Ming You & Jian-De Lin & Jun-Hao Wang & Si-Heng Luo & Ru-Yu Zhou & Chen-Jie Zhang & Jian-Lin Yao & Hui-Yang Li & Gen Li & Wei-Wei Wang & Yu Qiao & Jia-Wei Yan & De-Yin Wu & Guo-Kun Liu & Li, 2023. "Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Chuanlong Wang & Akila C. Thenuwara & Jianmin Luo & Pralav P. Shetty & Matthew T. McDowell & Haoyu Zhu & Sergio Posada-Pérez & Hui Xiong & Geoffroy Hautier & Weiyang Li, 2022. "Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yue Chen & Wenkai Wu & Sergio Gonzalez-Munoz & Leonardo Forcieri & Charlie Wells & Samuel P. Jarvis & Fangling Wu & Robert Young & Avishek Dey & Mark Isaacs & Mangayarkarasi Nagarathinam & Robert G. P, 2023. "Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03466-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.