Highly stretchable carbon aerogels
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-018-03268-y
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Mingmao Wu & Hongya Geng & Yajie Hu & Hongyun Ma & Ce Yang & Hongwu Chen & Yeye Wen & Huhu Cheng & Chun Li & Feng Liu & Lan Jiang & Liangti Qu, 2022. "Superelastic graphene aerogel-based metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Xiaoyu Zhang & Qi Sun & Xing Liang & Puzhong Gu & Zhenyu Hu & Xiao Yang & Muxiang Liu & Zejun Sun & Jia Huang & Guangming Wu & Guoqing Zu, 2024. "Stretchable and negative-Poisson-ratio porous metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Xiaota Cheng & Yi-Tao Liu & Yang Si & Jianyong Yu & Bin Ding, 2022. "Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Zhou, Yalan & Luo, Lu & Yan, Wen & Li, Zeliang & Fan, Mizi & Du, Guanben & Zhao, Weigang, 2022. "Controlled preparation of nitrogen-doped hierarchical carbon cryogels derived from Phenolic-Based resin and their CO2 adsorption properties," Energy, Elsevier, vol. 246(C).
- Hongxing Wang & Longdi Cheng & Jianyong Yu & Yang Si & Bin Ding, 2024. "Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03268-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.