IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03028-y.html
   My bibliography  Save this article

Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL

Author

Listed:
  • Bandish Kapadia

    (University of Maryland)

  • Nahid M. Nanaji

    (Maryland Healthcare System
    University of Maryland Medical Center)

  • Kavita Bhalla

    (University of Maryland)

  • Binny Bhandary

    (University of Maryland)

  • Rena Lapidus

    (University of Maryland)

  • Afshin Beheshti

    (Molecular Oncology Research Institute, Tufts Medical Center)

  • Andrew M. Evens

    (Molecular Oncology Research Institute, Tufts Medical Center)

  • Ronald B. Gartenhaus

    (University of Maryland
    Veterans Administration Medical Center)

Abstract

Altered lipid metabolism and aberrant protein translation are strongly associated with cancerous outgrowth; however, the inter-regulation of these key processes is still underexplored in diffuse large B-cell lymphoma (DLBCL). Although fatty acid synthase (FASN) activity is reported to positively correlate with PI3K-Akt-mTOR pathway that can modulate protein synthesis, the precise impact of FASN inhibition on this process is still unknown. Herein, we demonstrate that attenuating FASN expression or its activity significantly reduces eIF4B (eukaryotic initiation factor 4B) levels and consequently overall protein translation. Through biochemical studies, we identified eIF4B as a bonafide substrate of USP11, which stabilizes and enhances eIF4B activity. Employing both pharmacological and genetic approaches, we establish that FASN-induced PI3K-S6Kinase signaling phosphorylates USP11 enhancing its interaction with eIF4B and thereby promoting oncogenic translation.

Suggested Citation

  • Bandish Kapadia & Nahid M. Nanaji & Kavita Bhalla & Binny Bhandary & Rena Lapidus & Afshin Beheshti & Andrew M. Evens & Ronald B. Gartenhaus, 2018. "Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03028-y
    DOI: 10.1038/s41467-018-03028-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03028-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03028-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Pilar Sanchez-Bailon & Soo-Youn Choi & Elizabeth R. Dufficy & Karan Sharma & Gavin S. McNee & Emma Gunnell & Kelly Chiang & Debashish Sahay & Sarah Maslen & Grant S. Stewart & J. Mark Skehel & I, 2021. "Arginine methylation and ubiquitylation crosstalk controls DNA end-resection and homologous recombination repair," Nature Communications, Nature, vol. 12(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03028-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.