IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02983-w.html
   My bibliography  Save this article

Ocean submesoscales as a key component of the global heat budget

Author

Listed:
  • Zhan Su

    (California Institute of Technology
    California Institute of Technology)

  • Jinbo Wang

    (California Institute of Technology)

  • Patrice Klein

    (California Institute of Technology
    California Institute of Technology
    Laboratoire d’Océanographie Physique et Spatiale)

  • Andrew F. Thompson

    (California Institute of Technology)

  • Dimitris Menemenlis

    (California Institute of Technology)

Abstract

Recent studies highlight that oceanic motions associated with horizontal scales smaller than 50 km, defined here as submesoscales, lead to anomalous vertical heat fluxes from colder to warmer waters. This unique transport property is not captured in climate models that have insufficient resolution to simulate these submesoscale dynamics. Here, we use an ocean model with an unprecedented resolution that, for the first time, globally resolves submesoscale heat transport. Upper-ocean submesoscale turbulence produces a systematically-upward heat transport that is five times larger than mesoscale heat transport, with winter-time averages up to 100 W/m2 for mid-latitudes. Compared to a lower-resolution model, submesoscale heat transport warms the sea surface up to 0.3 °C and produces an upward annual-mean air–sea heat flux anomaly of 4–10 W/m2 at mid-latitudes. These results indicate that submesoscale dynamics are critical to the transport of heat between the ocean interior and the atmosphere, and are thus a key component of the Earth’s climate.

Suggested Citation

  • Zhan Su & Jinbo Wang & Patrice Klein & Andrew F. Thompson & Dimitris Menemenlis, 2018. "Ocean submesoscales as a key component of the global heat budget," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02983-w
    DOI: 10.1038/s41467-018-02983-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02983-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02983-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jihai Dong & Baylor Fox-Kemper & Jacob O. Wenegrat & Abigail S. Bodner & Xiaolong Yu & Stephen Belcher & Changming Dong, 2024. "Submesoscales are a significant turbulence source in global ocean surface boundary layer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhiwei Zhang & Yuelin Liu & Bo Qiu & Yiyong Luo & Wenju Cai & Qingguo Yuan & Yinxing Liu & Hong Zhang & Hailong Liu & Mingfang Miao & Jinchao Zhang & Wei Zhao & Jiwei Tian, 2023. "Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02983-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.