IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53959-y.html
   My bibliography  Save this article

Submesoscales are a significant turbulence source in global ocean surface boundary layer

Author

Listed:
  • Jihai Dong

    (Nanjing University of Information Science and Technology
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Baylor Fox-Kemper

    (Brown University)

  • Jacob O. Wenegrat

    (College Park)

  • Abigail S. Bodner

    (Massachusetts Institute of Technology)

  • Xiaolong Yu

    (Sun Yat-sen University)

  • Stephen Belcher

    (Met Office Hadley Centre)

  • Changming Dong

    (Nanjing University of Information Science and Technology
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

Abstract

The turbulent ocean surface boundary layer is a key part of the climate system affecting both the energy and carbon cycles. Accurately simulating the boundary layer is critical in improving climate model performance, which deeply relies on our understanding of the turbulence in the boundary layer. Turbulent energy sources in the boundary layer are traditionally believed to be dominated by waves, winds and convection. Recently, submesoscale phenomena with spatial scales of 0.1~10 km at ocean fronts have been shown to also make a contribution. Here, by applying a non-dimensional turbulent kinetic energy budget equation, we show that the submesoscale geostrophic shear production at fronts is a significant turbulent energy source within the ocean boundary layer away from the sea surface. The contribution reaches 34% of the total dissipation in winter and 17% in summer at the mid-depth of the boundary layer, despite its intermittency in space and time. This work indicates fundamental deficiencies in previous conceptions of ocean boundary layer turbulence, and invites a reappraisal of the sampling scale in observations, model resolution and parameterizations, and other consequences of the global energy budget.

Suggested Citation

  • Jihai Dong & Baylor Fox-Kemper & Jacob O. Wenegrat & Abigail S. Bodner & Xiaolong Yu & Stephen Belcher & Changming Dong, 2024. "Submesoscales are a significant turbulence source in global ocean surface boundary layer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53959-y
    DOI: 10.1038/s41467-024-53959-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53959-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53959-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jörn Callies & Raffaele Ferrari & Jody M. Klymak & Jonathan Gula, 2015. "Seasonality in submesoscale turbulence," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    2. Zhan Su & Jinbo Wang & Patrice Klein & Andrew F. Thompson & Dimitris Menemenlis, 2018. "Ocean submesoscales as a key component of the global heat budget," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bracco, Annalisa & Liu, Guangpeng & Sun, Daoxun, 2019. "Mesoscale-submesoscale interactions in the Gulf of Mexico: From oil dispersion to climate," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 63-72.
    2. Georgy E. Manucharyan & Andrew F. Thompson, 2022. "Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Aguilera-Rojas, P.J. & Clerc, M.G. & Echeverría-Alar, S. & Soupart, Y. & Tlidi, M., 2024. "Fingerprint pattern bi-turbulence in a driven dissipative optical system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Zhiwei Zhang & Yuelin Liu & Bo Qiu & Yiyong Luo & Wenju Cai & Qingguo Yuan & Yinxing Liu & Hong Zhang & Hailong Liu & Mingfang Miao & Jinchao Zhang & Wei Zhao & Jiwei Tian, 2023. "Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53959-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.