IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02875-z.html
   My bibliography  Save this article

Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics

Author

Listed:
  • Craig R. MacNair

    (McMaster University)

  • Jonathan M. Stokes

    (McMaster University)

  • Lindsey A. Carfrae

    (McMaster University)

  • Aline A. Fiebig-Comyn

    (McMaster University)

  • Brian K. Coombes

    (McMaster University)

  • Michael R. Mulvey

    (Public Health Agency of Canada)

  • Eric D. Brown

    (McMaster University)

Abstract

Plasmid-borne colistin resistance mediated by mcr-1 may contribute to the dissemination of pan-resistant Gram-negative bacteria. Here, we show that mcr-1 confers resistance to colistin-induced lysis and bacterial cell death, but provides minimal protection from the ability of colistin to disrupt the Gram-negative outer membrane. Indeed, for colistin-resistant strains of Enterobacteriaceae expressing plasmid-borne mcr-1, clinically relevant concentrations of colistin potentiate the action of antibiotics that, by themselves, are not active against Gram-negative bacteria. The result is that several antibiotics, in combination with colistin, display growth-inhibition at levels below their corresponding clinical breakpoints. Furthermore, colistin and clarithromycin combination therapy displays efficacy against mcr-1-positive Klebsiella pneumoniae in murine thigh and bacteremia infection models at clinically relevant doses. Altogether, these data suggest that the use of colistin in combination with antibiotics that are typically active against Gram-positive bacteria poses a viable therapeutic alternative for highly drug-resistant Gram-negative pathogens expressing mcr-1.

Suggested Citation

  • Craig R. MacNair & Jonathan M. Stokes & Lindsey A. Carfrae & Aline A. Fiebig-Comyn & Brian K. Coombes & Michael R. Mulvey & Eric D. Brown, 2018. "Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02875-z
    DOI: 10.1038/s41467-018-02875-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02875-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02875-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerry R. Buchholz & Mike Reichelt & Matthew C. Johnson & Sarah J. Robinson & Peter A. Smith & Steven T. Rutherford & John G. Quinn, 2024. "Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02875-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.