IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02755-y.html
   My bibliography  Save this article

Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios

Author

Listed:
  • Sourangsu Chowdhury

    (Indian Institute of Technology)

  • Sagnik Dey

    (Indian Institute of Technology)

  • Kirk R. Smith

    (University of California Berkeley
    Collaborative Clean Air Policy Centre Delhi)

Abstract

Premature mortality from current ambient fine particulate (PM2.5) exposure in India is large, but the trend under climate change is unclear. Here we estimate ambient PM2.5 exposure up to 2100 by applying the relative changes in PM2.5 from baseline period (2001–2005) derived from Coupled Model Inter-comparison Project 5 (CMIP5) models to the satellite-derived baseline PM2.5. We then project the mortality burden using socioeconomic and demographic projections in the Shared Socioeconomic Pathway (SSP) scenarios. Ambient PM2.5 exposure is expected to peak in 2030 under the RCP4.5 and in 2040 under the RCP8.5 scenario. Premature mortality burden is expected to be 2.4–4 and 28.5–38.8% higher under RCP8.5 scenario relative to the RCP4.5 scenario in 2031–2040 and 2091–2100, respectively. Improved health conditions due to economic growth are expected to compensate for the impact of changes in population and age distribution, leading to a reduction in per capita health burden from PM2.5 for all scenarios except the combination of RCP8.5 exposure and SSP3.

Suggested Citation

  • Sourangsu Chowdhury & Sagnik Dey & Kirk R. Smith, 2018. "Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02755-y
    DOI: 10.1038/s41467-017-02755-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02755-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02755-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nilakshi T. Waidyatillake & Patricia T. Campbell & Don Vicendese & Shyamali C. Dharmage & Ariadna Curto & Mark Stevenson, 2021. "Particulate Matter and Premature Mortality: A Bayesian Meta-Analysis," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    2. Ning Xu & Fan Zhang & Xin Xuan, 2021. "Impacts of Industrial Restructuring and Technological Progress on PM 2.5 Pollution: Evidence from Prefecture-Level Cities in China," IJERPH, MDPI, vol. 18(10), pages 1-17, May.
    3. Camilla W. Stjern & Øivind Hodnebrog & Gunnar Myhre & Ignacio Pisso, 2023. "The turbulent future brings a breath of fresh air," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ruoyu Lan & Sebastian D. Eastham & Tianjia Liu & Leslie K. Norford & Steven R. H. Barrett, 2022. "Air quality impacts of crop residue burning in India and mitigation alternatives," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Asim Anwar & Inayat Ullah & Mustafa Younis & Antoine Flahault, 2021. "Impact of Air Pollution (PM 2.5 ) on Child Mortality: Evidence from Sixteen Asian Countries," IJERPH, MDPI, vol. 18(12), pages 1-13, June.
    6. Fangjin Xu & Qingxu Huang & Huanbi Yue & Xingyun Feng & Haoran Xu & Chunyang He & Peng Yin & Brett A. Bryan, 2023. "The challenge of population aging for mitigating deaths from PM2.5 air pollution in China," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Guo, Kun & Liu, Fengqi & Sun, Xiaolei & Zhang, Dayong & Ji, Qiang, 2023. "Predicting natural gas futures’ volatility using climate risks," Finance Research Letters, Elsevier, vol. 55(PA).
    8. Huanbi Yue & Chunyang He & Qingxu Huang & Da Zhang & Peijun Shi & Enayat A. Moallemi & Fangjin Xu & Yang Yang & Xin Qi & Qun Ma & Brett A. Bryan, 2024. "Substantially reducing global PM2.5-related deaths under SDG3.9 requires better air pollution control and healthcare," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02755-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.