IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01303-y.html
   My bibliography  Save this article

Integrated Pound−Drever−Hall laser stabilization system in silicon

Author

Listed:
  • Mohamad Hossein Idjadi

    (University of Pennsylvania)

  • Firooz Aflatouni

    (University of Pennsylvania)

Abstract

Low noise stable lasers have far-reaching applications in spectroscopy, communication, metrology and basic science. The Pound−Drever−Hall laser stabilization technique is widely used to stabilize different types of lasers in these areas. Here we report the demonstration of an integrated Pound−Drever−Hall system that can stabilize a low-cost laser to realize a compact inexpensive light source, which can ultimately impact many fields of science and engineering. We present an integrated architecture utilizing an electronically reconfigurable Mach−Zehnder interferometer as the frequency reference to reduce the frequency noise of semiconductor lasers by more than 25 dB and the relative Allan deviation by more than 12 times at 200 μs averaging time. Compared to the bench-top implementations, the integrated Pound−Drever−Hall system has significantly lower power consumption, less sensitivity to the environmental fluctuations and occupies an area of only 2.38 mm2. The photonic and electronic devices are integrated on a standard 180 nm complementary metal-oxide semiconductor silicon-on-insulator process.

Suggested Citation

  • Mohamad Hossein Idjadi & Firooz Aflatouni, 2017. "Integrated Pound−Drever−Hall laser stabilization system in silicon," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01303-y
    DOI: 10.1038/s41467-017-01303-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01303-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01303-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Ma & Zhaoyu Cai & Chijie Zhuang & Xiangdong Liu & Zhecheng Zhang & Kewei Liu & Bo Cao & Jinliang He & Changxi Yang & Chengying Bao & Rong Zeng, 2024. "Integrated microcavity electric field sensors using Pound-Drever-Hall detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01303-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.