IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00854-4.html
   My bibliography  Save this article

PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice

Author

Listed:
  • Deqiang Ding

    (Michigan State University)

  • Jiali Liu

    (Michigan State University
    China Agricultural University)

  • Kunzhe Dong

    (Avian Disease and Oncology Laboratory)

  • Uros Midic

    (Michigan State University)

  • Rex A. Hess

    (University of Illinois)

  • Huirong Xie

    (Michigan State University)

  • Elena Y. Demireva

    (Michigan State University)

  • Chen Chen

    (Michigan State University
    Michigan State University
    Michigan State University)

Abstract

Piwi-interacting RNAs are small regulatory RNAs with key roles in transposon silencing and regulation of gametogenesis. The production of mature piwi-interacting RNAs requires a critical step of trimming piwi-interacting RNA intermediates to achieve optimally sized piwi-interacting RNAs. The poly(A)-specific ribonuclease family deadenylase PNLDC1 is implicated in piwi-interacting RNA trimming in silkworms. The physiological function of PNLDC1 in mammals remains unknown. Using Pnldc1-deficient mice, here we show that PNLDC1 is required for piwi-interacting RNA biogenesis, transposon silencing, and spermatogenesis. Pnldc1 mutation in mice inhibits piwi-interacting RNA trimming and causes accumulation of untrimmed piwi-interacting RNA intermediates with 3′ end extension, leading to severe reduction of mature piwi-interacting RNAs in the testis. Pnldc1 mutant mice exhibit disrupted LINE1 retrotransposon silencing and defect in spermiogenesis. Together, these results define PNLDC1 as a mammalian piwi-interacting RNA biogenesis factor that protects the germline genome and ensures normal sperm production in mice.

Suggested Citation

  • Deqiang Ding & Jiali Liu & Kunzhe Dong & Uros Midic & Rex A. Hess & Huirong Xie & Elena Y. Demireva & Chen Chen, 2017. "PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00854-4
    DOI: 10.1038/s41467-017-00854-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00854-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00854-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birgit Stallmeyer & Clara Bühlmann & Rytis Stakaitis & Ann-Kristin Dicke & Farah Ghieh & Luisa Meier & Ansgar Zoch & David MacKenzie MacLeod & Johanna Steingröver & Özlem Okutman & Daniela Fietz & Adr, 2024. "Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Liina Nagirnaja & Alexandra M. Lopes & Wu-Lin Charng & Brian Miller & Rytis Stakaitis & Ieva Golubickaite & Alexandra Stendahl & Tianpengcheng Luan & Corinna Friedrich & Eisa Mahyari & Eloise Fadial &, 2022. "Diverse monogenic subforms of human spermatogenic failure," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Yu H. Sun & Ruoqiao Huiyi Wang & Khai Du & Jiang Zhu & Jihong Zheng & Li Huitong Xie & Amanda A. Pereira & Chao Zhang & Emiliano P. Ricci & Xin Zhiguo Li, 2021. "Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Huan Wei & Jie Gao & Di-Hang Lin & Ruirong Geng & Jiaoyang Liao & Tian-Yu Huang & Guanyi Shang & Jiongjie Jing & Zong-Wei Fan & Duo Pan & Zi-Qi Yin & Tianming Li & Xinyu Liu & Shuang Zhao & Chen Chen , 2024. "piRNA loading triggers MIWI translocation from the intermitochondrial cement to chromatoid body during mouse spermatogenesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Susanne Bornelöv & Benjamin Czech & Gregory J. Hannon, 2022. "An evolutionarily conserved stop codon enrichment at the 5′ ends of mammalian piRNAs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00854-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.