IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00757-4.html
   My bibliography  Save this article

Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions

Author

Listed:
  • Hongliang Tan

    (National University of Singapore)

  • Song Guo

    (National University of Singapore)

  • Ngoc-Duy Dinh

    (National University of Singapore)

  • Rongcong Luo

    (National University of Singapore)

  • Lin Jin

    (National University of Singapore)

  • Chia-Hung Chen

    (National University of Singapore
    Singapore Institute for Neurotechnology (SINAPSE)
    Biomedical Institute for Global Health Research and Technology)

Abstract

In nature, individual cells contain multiple isolated compartments in which cascade enzymatic reactions occur to form essential biological products with high efficiency. Here, we report a cell-inspired design of functional hydrogel particles with multiple compartments, in which different enzymes are spatially immobilized in distinct domains that enable engineered, one-pot, tandem reactions. The dense packing of different compartments in the hydrogel particle enables effective transportation of reactants to ensure that the products are generated with high efficiency. To demonstrate the advantages of micro-environmental modifications, we employ the copolymerization of acrylic acid, which leads to the formation of heterogeneous multi-compartmental hydrogel particles with different pH microenvironments. Upon the positional assembly of glucose oxidase and magnetic nanoparticles, these hydrogel particles are able to process a glucose-triggered, incompatible, multistep tandem reaction in one pot. Furthermore, based on the high cytotoxicity of hydroxyl radicals, a glucose-powered therapeutic strategy to kill cancer cells was approached.

Suggested Citation

  • Hongliang Tan & Song Guo & Ngoc-Duy Dinh & Rongcong Luo & Lin Jin & Chia-Hung Chen, 2017. "Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00757-4
    DOI: 10.1038/s41467-017-00757-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00757-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00757-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Weng & Huihong Chen & Xiaoqian Chen & Huilin Yang & Chia-Hung Chen & Hongliang Tan, 2022. "Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00757-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.