IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00394-x.html
   My bibliography  Save this article

Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo

Author

Listed:
  • Simon D. Fisher

    (University of Otago)

  • Paul B. Robertson

    (University of Auckland)

  • Melony J. Black

    (University of Otago)

  • Peter Redgrave

    (University of Sheffield)

  • Mark A. Sagar

    (University of Auckland)

  • Wickliffe C. Abraham

    (University of Otago)

  • John N.J. Reynolds

    (University of Otago)

Abstract

Plasticity at synapses between the cortex and striatum is considered critical for learning novel actions. However, investigations of spike-timing-dependent plasticity (STDP) at these synapses have been performed largely in brain slice preparations, without consideration of physiological reinforcement signals. This has led to conflicting findings, and hampered the ability to relate neural plasticity to behavior. Using intracellular striatal recordings in intact rats, we show here that pairing presynaptic and postsynaptic activity induces robust Hebbian bidirectional plasticity, dependent on dopamine and adenosine signaling. Such plasticity, however, requires the arrival of a reward-conditioned sensory reinforcement signal within 2 s of the STDP pairing, thus revealing a timing-dependent eligibility trace on which reinforcement operates. These observations are validated with both computational modeling and behavioral testing. Our results indicate that Hebbian corticostriatal plasticity can be induced by classical reinforcement learning mechanisms, and might be central to the acquisition of novel actions.

Suggested Citation

  • Simon D. Fisher & Paul B. Robertson & Melony J. Black & Peter Redgrave & Mark A. Sagar & Wickliffe C. Abraham & John N.J. Reynolds, 2017. "Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00394-x
    DOI: 10.1038/s41467-017-00394-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00394-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00394-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su Z. Hong & Lukas Mesik & Cooper D. Grossman & Jeremiah Y. Cohen & Boram Lee & Daniel Severin & Hey-Kyoung Lee & Johannes W. Hell & Alfredo Kirkwood, 2022. "Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00394-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.