IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00189-0.html
   My bibliography  Save this article

Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution

Author

Listed:
  • Davide Bochicchio

    (University of Applied Sciences and Arts of Southern Switzerland)

  • Matteo Salvalaglio

    (University College London)

  • Giovanni M. Pavan

    (University of Applied Sciences and Arts of Southern Switzerland)

Abstract

To rationally design supramolecular polymers capable of self-healing or reconfiguring their structure in a dynamically controlled way, it is imperative to gain access into the intrinsic dynamics of the supramolecular polymer (dynamic exchange of monomers) while maintaining a high-resolution description of the monomer structure. But this is prohibitively difficult at experimental level. Here we show atomistic, coarse-grained modelling combined with advanced simulation approaches to characterize the molecular mechanisms and relative kinetics of monomer exchange in structural variants of a synthetic supramolecular polymer in different conditions. We can capture differences in supramolecular dynamics consistent with the experimental observations, revealing that monomer exchange in and out the fibres originates from the defects present in their supramolecular structure. At the same time, the submolecular resolution of this approach offers a molecular-level insight into the dynamics of these bioinspired materials, and a flexible tool to obtain structure-dynamics relationships for a variety of polymeric assemblies.

Suggested Citation

  • Davide Bochicchio & Matteo Salvalaglio & Giovanni M. Pavan, 2017. "Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00189-0
    DOI: 10.1038/s41467-017-00189-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00189-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00189-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ty Christoff-Tempesta & Yukio Cho & Samuel J. Kaser & Linnaea D. Uliassi & Xiaobing Zuo & Shayna L. Hilburg & Lilo D. Pozzo & Julia H. Ortony, 2024. "Interfacial dynamics mediate surface binding events on supramolecular nanostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Martina Crippa & Claudio Perego & Anna L. Marco & Giovanni M. Pavan, 2022. "Molecular communications in complex systems of dynamic supramolecular polymers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00189-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.