IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms16055.html
   My bibliography  Save this article

El Niño-like teleconnection increases California precipitation in response to warming

Author

Listed:
  • Robert J. Allen

    (University of California Riverside)

  • Rainer Luptowitz

    (University of California Riverside)

Abstract

Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Niño teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Niño-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century.

Suggested Citation

  • Robert J. Allen & Rainer Luptowitz, 2017. "El Niño-like teleconnection increases California precipitation in response to warming," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16055
    DOI: 10.1038/ncomms16055
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms16055
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms16055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Beganskas & Kyle S. Young & Andrew T. Fisher & Ryan Harmon & Sacha Lozano, 2019. "Runoff Modeling of a Coastal Basin to Assess Variations in Response to Shifting Climate and Land Use: Implications for Managed Recharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1683-1698, March.
    2. Underwood, Emma C. & Hollander, Allan D. & Safford, Hugh D. & Kim, John B. & Srivastava, Lorie & Drapek, Ray J., 2019. "The impacts of climate change on ecosystem services in southern California," Ecosystem Services, Elsevier, vol. 39(C).
    3. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Cindy C. Yañez & Francesca M. Hopkins & William C. Porter, 2020. "Projected impacts of climate change on tourism in the Coachella Valley, California," Climatic Change, Springer, vol. 162(2), pages 707-721, September.
    5. Zhiwei Yong & Junnan Xiong & Zegen Wang & Weiming Cheng & Jiawei Yang & Quan Pang, 2021. "Relationship of extreme precipitation, surface air temperature, and dew point temperature across the Tibetan Plateau," Climatic Change, Springer, vol. 165(1), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.