IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15821.html
   My bibliography  Save this article

Reactivation of associative structure specific outcome responses during prospective evaluation in reward-based choices

Author

Listed:
  • Maya Zhe Wang

    (University of Rochester)

  • Benjamin Y. Hayden

    (University of Rochester)

Abstract

Before making a reward-based choice, we must evaluate each option. Some theories propose that prospective evaluation involves a reactivation of the neural response to the outcome. Others propose that it calls upon a response pattern that is specific to each underlying associative structure. We hypothesize that these views are reconcilable: during prospective evaluation, offers reactivate neural responses to outcomes that are unique to each associative structure; when the outcome occurs, this pattern is activated, simultaneously, with a general response to the reward. We recorded single-units from macaque orbitofrontal cortex (Area 13) in a riskless choice task with interleaved described and experienced offer trials. Here we report that neural activations to offers and their outcomes overlap, as do neural activations to the outcomes on the two trial types. Neural activations to experienced and described offers are unrelated even though they predict the same outcomes. Our reactivation theory parsimoniously explains these results.

Suggested Citation

  • Maya Zhe Wang & Benjamin Y. Hayden, 2017. "Reactivation of associative structure specific outcome responses during prospective evaluation in reward-based choices," Nature Communications, Nature, vol. 8(1), pages 1-13, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15821
    DOI: 10.1038/ncomms15821
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15821
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maya Zhe Wang & Benjamin Y. Hayden & Sarah R. Heilbronner, 2022. "A structural and functional subdivision in central orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.