IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15695.html
   My bibliography  Save this article

Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded

Author

Listed:
  • Emily E. Wrenbeck

    (Michigan State University)

  • Laura R. Azouz

    (Michigan State University)

  • Timothy A. Whitehead

    (Michigan State University
    Michigan State University)

Abstract

Our lack of total understanding of the intricacies of how enzymes behave has constrained our ability to robustly engineer substrate specificity. Furthermore, the mechanisms of natural evolution leading to improved or novel substrate specificities are not wholly defined. Here we generate near-comprehensive single-mutation fitness landscapes comprising >96.3% of all possible single nonsynonymous mutations for hydrolysis activity of an amidase expressed in E. coli with three different substrates. For all three selections, we find that the distribution of beneficial mutations can be described as exponential, supporting a current hypothesis for adaptive molecular evolution. Beneficial mutations in one selection have essentially no correlation with fitness for other selections and are dispersed throughout the protein sequence and structure. Our results further demonstrate the dependence of local fitness landscapes on substrate identity and provide an example of globally distributed sequence-specificity determinants for an enzyme.

Suggested Citation

  • Emily E. Wrenbeck & Laura R. Azouz & Timothy A. Whitehead, 2017. "Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15695
    DOI: 10.1038/ncomms15695
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15695
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosario Vanella & Christoph Küng & Alexandre A. Schoepfer & Vanni Doffini & Jin Ren & Michael A. Nash, 2024. "Understanding activity-stability tradeoffs in biocatalysts by enzyme proximity sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Allwin D. McDonald & Peyton M. Higgins & Andrew R. Buller, 2022. "Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.