IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15634.html
   My bibliography  Save this article

High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

Author

Listed:
  • Cameron L. Tracy

    (Stanford University)

  • Sulgiye Park

    (Stanford University)

  • Dylan R. Rittman

    (Stanford University)

  • Steven J. Zinkle

    (University of Tennessee
    University of Tennessee)

  • Hongbin Bei

    (Oak Ridge National Laboratory)

  • Maik Lang

    (University of Tennessee)

  • Rodney C. Ewing

    (Stanford University)

  • Wendy L. Mao

    (Stanford University
    Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

Suggested Citation

  • Cameron L. Tracy & Sulgiye Park & Dylan R. Rittman & Steven J. Zinkle & Hongbin Bei & Maik Lang & Rodney C. Ewing & Wendy L. Mao, 2017. "High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15634
    DOI: 10.1038/ncomms15634
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15634
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Wei Chen & Antoine Hilhorst & Georgios Bokas & Stéphane Gorsse & Pascal J. Jacques & Geoffroy Hautier, 2023. "A map of single-phase high-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.