IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14379.html
   My bibliography  Save this article

Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

Author

Listed:
  • Stuart J. Daines

    (Earth System Science Group, College of Life and Environmental Sciences, University of Exeter)

  • Benjamin J. W. Mills

    (Earth System Science Group, College of Life and Environmental Sciences, University of Exeter
    School of Earth and Environment, University of Leeds)

  • Timothy M. Lenton

    (Earth System Science Group, College of Life and Environmental Sciences, University of Exeter)

Abstract

It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2

Suggested Citation

  • Stuart J. Daines & Benjamin J. W. Mills & Timothy M. Lenton, 2017. "Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14379
    DOI: 10.1038/ncomms14379
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14379
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babette A. A. Hoogakker & Caroline Anderson & Tommaso Paoloni & Andrew Stott & Helen Grant & Patrick Keenan & Claire Mahaffey & Sabena Blackbird & Erin L. McClymont & Ros Rickaby & Alex Poulton & Vict, 2022. "Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.