IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32480-0.html
   My bibliography  Save this article

Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling

Author

Listed:
  • Babette A. A. Hoogakker

    (Heriot-Watt University)

  • Caroline Anderson

    (University of Oxford)

  • Tommaso Paoloni

    (Heriot-Watt University)

  • Andrew Stott

    (UK Centre for Ecology and Hydrology)

  • Helen Grant

    (UK Centre for Ecology and Hydrology)

  • Patrick Keenan

    (UK Centre for Ecology and Hydrology)

  • Claire Mahaffey

    (University of Liverpool)

  • Sabena Blackbird

    (University of Liverpool)

  • Erin L. McClymont

    (Durham University)

  • Ros Rickaby

    (University of Oxford)

  • Alex Poulton

    (Heriot-Watt University)

  • Victoria L. Peck

    (British Antarctic Survey)

Abstract

The carbon cycle is a key regulator of Earth’s climate. On geological time-scales, our understanding of particulate organic matter (POM), an important upper ocean carbon pool that fuels ecosystems and an integrated part of the carbon cycle, is limited. Here we investigate the relationship of planktonic foraminifera-bound organic carbon isotopes (δ13Corg-pforam) with δ13Corg of POM (δ13Corg-POM). We compare δ13Corg-pforam of several planktonic foraminifera species from plankton nets and recent sediment cores with δ13Corg-POM on a N-S Atlantic Ocean transect. Our results indicate that δ13Corg-pforam of planktonic foraminifera are remarkably similar to δ13Corg-POM. Application of our method on a glacial sample furthermore provided a δ13Corg-pforam value similar to glacial δ13Corg-POM predictions. We thus show that δ13Corg-pforam is a promising proxy to reconstruct environmental conditions in the upper ocean, providing a route to isolate past variations in δ13Corg-POM and better understanding of the evolution of the carbon cycle over geological time-scales.

Suggested Citation

  • Babette A. A. Hoogakker & Caroline Anderson & Tommaso Paoloni & Andrew Stott & Helen Grant & Patrick Keenan & Claire Mahaffey & Sabena Blackbird & Erin L. McClymont & Ros Rickaby & Alex Poulton & Vict, 2022. "Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32480-0
    DOI: 10.1038/s41467-022-32480-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32480-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32480-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stuart J. Daines & Benjamin J. W. Mills & Timothy M. Lenton, 2017. "Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    2. Daniel M. Sigman & Edward A. Boyle, 2000. "Glacial/interglacial variations in atmospheric carbon dioxide," Nature, Nature, vol. 407(6806), pages 859-869, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael E. Weber & Ian Bailey & Sidney R. Hemming & Yasmina M. Martos & Brendan T. Reilly & Thomas A. Ronge & Stefanie Brachfeld & Trevor Williams & Maureen Raymo & Simon T. Belt & Lukas Smik & Hendri, 2022. "Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Anne Willem Omta & Christopher L. Follett & Jonathan M. Lauderdale & Raffaele Ferrari, 2024. "Carbon isotope budget indicates biological disequilibrium dominated ocean carbon storage at the Last Glacial Maximum," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhengquan Yao & Xuefa Shi & Qiuzhen Yin & Samuel Jaccard & Yanguang Liu & Zhengtang Guo & Sergey A. Gorbarenko & Kunshan Wang & Tianyu Chen & Zhipeng Wu & Qingyun Nan & Jianjun Zou & Hongmin Wang & Ji, 2024. "Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Mojtaba Fakhraee & Noah Planavsky, 2024. "Insights from a dynamical system approach into the history of atmospheric oxygenation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Yuhao Dai & Jimin Yu & Haojia Ren & Xuan Ji, 2022. "Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yanting Zhang & Man Tong & Yuxi Lu & Fengyi Zhao & Peng Zhang & Zhenchen Wan & Ping Li & Songhu Yuan & Yanxin Wang & Andreas Kappler, 2024. "Directional long-distance electron transfer from reduced to oxidized zones in the subsurface," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. James A. Menking & Sarah A. Shackleton & Thomas K. Bauska & Aron M. Buffen & Edward J. Brook & Stephen Barker & Jeffrey P. Severinghaus & Michael N. Dyonisius & Vasilii V. Petrenko, 2022. "Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Shinya Iwasaki & Lester Lembke-Jene & Kana Nagashima & Helge W. Arz & Naomi Harada & Katsunori Kimoto & Frank Lamy, 2022. "Evidence for late-glacial oceanic carbon redistribution and discharge from the Pacific Southern Ocean," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Liao Chang & Babette A. A. Hoogakker & David Heslop & Xiang Zhao & Andrew P. Roberts & Patrick Deckker & Pengfei Xue & Zhaowen Pei & Fan Zeng & Rong Huang & Baoqi Huang & Shishun Wang & Thomas A. Bern, 2023. "Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32480-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.