IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14156.html
   My bibliography  Save this article

Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

Author

Listed:
  • Neil K. Ganju

    (U.S. Geological Survey, Woods Hole Coastal and Marine Science Center)

  • Zafer Defne

    (U.S. Geological Survey, Woods Hole Coastal and Marine Science Center)

  • Matthew L. Kirwan

    (Virginia Institute of Marine Science)

  • Sergio Fagherazzi

    (Boston University)

  • Andrea D’Alpaos

    (University of Padua, Environmental, and Architectural Engineering)

  • Luca Carniello

    (University of Padua, Environmental, and Architectural Engineering)

Abstract

Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

Suggested Citation

  • Neil K. Ganju & Zafer Defne & Matthew L. Kirwan & Sergio Fagherazzi & Andrea D’Alpaos & Luca Carniello, 2017. "Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14156
    DOI: 10.1038/ncomms14156
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14156
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Kevin C. Hanegan & Duncan M. FitzGerald & Ioannis Y. Georgiou & Zoe J. Hughes, 2023. "Long-term sea level rise modeling of a basin-tidal inlet system reveals sediment sinks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Xuejiao Hou & Danghan Xie & Lian Feng & Fang Shen & Jaap H. Nienhuis, 2024. "Sustained increase in suspended sediments near global river deltas over the past two decades," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Zafer Defne & Alfredo L Aretxabaleta & Neil K Ganju & Tarandeep S Kalra & Daniel K Jones & Kathryn E L Smith, 2020. "A geospatially resolved wetland vulnerability index: Synthesis of physical drivers," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-27, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.